so don't claim they are. They are allocated using DAG.getNode, so attempts
to access MemSDNode fields results in reading off the end of the allocated
memory. This fixes crashes with "llc -debug" due to debug code trying to
print MemSDNode fields for these barrier nodes (since the crashes are not
deterministic, use valgrind to see this). Add some nasty checking to try
to catch this kind of thing in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119901 91177308-0d34-0410-b5e6-96231b3b80d8
DAGCombine from making an illegal transformation of bitcast of a scalar to a
vector into a scalar_to_vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119819 91177308-0d34-0410-b5e6-96231b3b80d8
if the extension types were not the same. The result was that if you
fed a select with sext and zext loads, as in the testcase, then it
would get turned into a zext (or sext) of the select, which is wrong
in the cases when it should have been an sext (resp. zext). Reported
and diagnosed by Sebastien Deldon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119728 91177308-0d34-0410-b5e6-96231b3b80d8
memset; we may need it to decide between MOVAPS and MOVUPS
later. Adjust a test that was looking for wrong code.
PR 3866 / 8675131.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119605 91177308-0d34-0410-b5e6-96231b3b80d8
easier to debug, and to avoid complications when the CFG changes
in the middle of the instruction selection process.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119382 91177308-0d34-0410-b5e6-96231b3b80d8
catastrophic compilation time in the event of unreasonable LLVM
IR. Code quality is a separate issue--someone upstream needs to do a
better job of reducing to llvm.memcpy. If the situation can be reproduced with
any supported frontend, then it will be a separate bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118904 91177308-0d34-0410-b5e6-96231b3b80d8
to perform the copy, which may be of lots of memory [*]. It would be good if the
fall-back code generated something reasonable, i.e. did the copy in a loop, rather
than vast numbers of loads and stores. Add a note about this. Currently target
specific code seems to always kick in so this is more of a theoretical issue rather
than a practical one now that X86 has been fixed.
[*] It's amazing how often people pass mega-byte long arrays by copy...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118275 91177308-0d34-0410-b5e6-96231b3b80d8
with a SimpleValueType, while an EVT supports equality and
inequality comparisons with SimpleValueType.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118169 91177308-0d34-0410-b5e6-96231b3b80d8
value type, so there is no point in passing it around using
an EVT. Use the simpler MVT everywhere. Rather than trying
to propagate this information maximally in all the code that
using the calling convention stuff, I chose to do a mainly
low impact change instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118167 91177308-0d34-0410-b5e6-96231b3b80d8
1. Fix pre-ra scheduler so it doesn't try to push instructions above calls to
"optimize for latency". Call instructions don't have the right latency and
this is more likely to use introduce spills.
2. Fix if-converter cost function. For ARM, it should use instruction latencies,
not # of micro-ops since multi-latency instructions is completely executed
even when the predicate is false. Also, some instruction will be "slower"
when they are predicated due to the register def becoming implicit input.
rdar://8598427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118135 91177308-0d34-0410-b5e6-96231b3b80d8
operand and one of them has a single use that is a live out copy, favor the
one that is live out. Otherwise it will be difficult to eliminate the copy
if the instruction is a loop induction variable update. e.g.
BB:
sub r1, r3, #1
str r0, [r2, r3]
mov r3, r1
cmp
bne BB
=>
BB:
str r0, [r2, r3]
sub r3, r3, #1
cmp
bne BB
This fixed the recent 256.bzip2 regression.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117675 91177308-0d34-0410-b5e6-96231b3b80d8
memory, so a MachineMemOperand is useful (not propagated
into the MachineInstr yet). No functional change except
for dump output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117413 91177308-0d34-0410-b5e6-96231b3b80d8
setup they require. Use this for ARM/Darwin to rematerialize the base
pointer from the frame pointer when required. rdar://8564268
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116879 91177308-0d34-0410-b5e6-96231b3b80d8
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8