Summary:
Make Mips fast-isel track the form of AArch64 where practical.
This makes it easier for people to review the code, to borrow similar code, and to see how to eventually move a lot of this
target code for fast-isels into target independent code.
These are just cosmetic changes. Should be no functional difference.
Test Plan:
make check
test-suite for 4 flavors mips32 r1/r2 , -O0/-O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: aemerson, llvm-commits, rfuhler
Differential Revision: http://reviews.llvm.org/D5595
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219633 91177308-0d34-0410-b5e6-96231b3b80d8
Some early revisions of the Cortex-A53 have an erratum (835769) whereby it is
possible for a 64-bit multiply-accumulate instruction in AArch64 state to
generate an incorrect result. The details are quite complex and hard to
determine statically, since branches in the code may exist in some
circumstances, but all cases end with a memory (load, store, or prefetch)
instruction followed immediately by the multiply-accumulate operation.
The safest work-around for this issue is to make the compiler avoid emitting
multiply-accumulate instructions immediately after memory instructions and the
simplest way to do this is to insert a NOP.
This patch implements such work-around in the backend, enabled via the option
-aarch64-fix-cortex-a53-835769.
The work-around code generation is not enabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219603 91177308-0d34-0410-b5e6-96231b3b80d8
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.
This mainly helps the stack inliner better fold reloads of 3 (or more) operand instructions (VEX encoded SSE etc.) but by performing this in the lowest foldMemoryOperandImpl implementation it also replaces the X86InstrInfo::optimizeLoadInstr version and is now used by FastISel too.
Differential Revision: http://reviews.llvm.org/D5701
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219584 91177308-0d34-0410-b5e6-96231b3b80d8
On x86_64 this brings it from 80 bytes to 64 bytes. Also make any member
variables private and clean up uses to go through the existing accessors.
NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219573 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Implement the most basic form of conditional branches in Mips fast-isel.
Test Plan:
br1.ll
run 4 flavors of test-suite. mips32 r1/r2 and at -O0/O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, rfuhler
Differential Revision: http://reviews.llvm.org/D5583
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219556 91177308-0d34-0410-b5e6-96231b3b80d8
Currently this only functions to match simple cases
where ds_read2_* / ds_write2_* instructions can be used.
In the future it might match some of the other weird
load patterns, such as direct to LDS loads.
Currently enabled only with a subtarget feature to enable
easier testing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219533 91177308-0d34-0410-b5e6-96231b3b80d8
is over a subset of condition codes.
This fixes the -Werror build which warns about use of uninitialized
variables in the default case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219531 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Add the ability to convert 64 or 32 bit floating point values to integer in mips fast-isel
Test Plan:
fpintconv.ll
ran 4 flavors of test-suite with no errors, misp32 r1/r2 O0/O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, rfuhler, mcrosier
Differential Revision: http://reviews.llvm.org/D5562
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219511 91177308-0d34-0410-b5e6-96231b3b80d8
The current VSX feature for PowerPC specifies availability of the VSX
instructions added with the 2.06 architecture version. With 2.07, the
architecture adds new instructions to both the Category:Vector and
Category:VSX instruction sets. Additionally, unaligned vector storage
operations have improved performance.
This patch adds a feature to provide access to the new instructions
and performance capabilities of Power8. For compatibility with GCC,
the feature is controlled via a new -mpower8-vector switch, and the
feature causes the __POWER8_VECTOR__ builtin define to be generated by
the preprocessor.
There is a companion patch for cfe being committed at the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219501 91177308-0d34-0410-b5e6-96231b3b80d8
This is dangerous for numerous reasons. The primary risk here is with
floating point or double types where if the wrong header files are
included in a strange order this can implicitly convert to integers and
then call the C abs function on the integers. There is a secondary risk
that even impacts integers where if the namespace the code is written in
ever defines an abs overload for types within that namespace the global
abs will be hidden. The correct form is to call std::abs or write 'using
std::abs' for builtin types (and only the latter is correct in any
generic context).
I've also added the requisite header to be a bit more explicit here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219484 91177308-0d34-0410-b5e6-96231b3b80d8
The current implementation of GPR->FPR register moves uses a stack slot. This mechanism writes a double word and reads a word. In big-endian the load address must be displaced by 4-bytes in order to get the right value. In little endian this is no longer required. This patch fixes the issue and adds LE regression tests to fast-isel-conversion which currently expose this problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219441 91177308-0d34-0410-b5e6-96231b3b80d8
The instruction emitter will crash if it encounters a CopyToReg
node with a non-register operand like FrameIndex.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219428 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes the PBQPBuilder class and its subclasses and replaces them
with a composable constraints class: PBQPRAConstraint. This allows constraints
that are only required for optimisation (e.g. coalescing, soft pairing) to be
mixed and matched.
This patch also introduces support for target writers to supply custom
constraints for their targets by overriding a TargetSubtargetInfo method:
std::unique_ptr<PBQPRAConstraints> getCustomPBQPConstraints() const;
This patch should have no effect on allocations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219421 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM assumes INSERT_SUBREG will always have register operands, so
we need to legalize non-register operands, like FrameIndexes, to
avoid random assertion failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219420 91177308-0d34-0410-b5e6-96231b3b80d8
The VSX instruction definitions for lxsdx, lxvd2x, lxvdsx, and lxvw4x
incorrectly use the XForm_1 instruction format, rather than the
XX1Form instruction format. This is likely a pasto when creating
these instructions, which were based on lvx and so forth. This patch
uses the correct format.
The existing reformatting test (test/MC/PowerPC/vsx.s) missed this
because the two formats differ only in that XX1Form has an extension
to the target register field in bit 31. The tests for these
instructions used a target register of 7, so the default of 0 in bit
31 for XForm_1 didn't expose a problem. For register numbers 32-63
this would be noticeable. I've changed the test to use higher
register numbers to verify my change is effective.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219416 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the Pat<>'s for the intrinsics. These are necessary because we
don't lower these intrinsics to SDNodes but match them directly. See the
rational in the previous commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219362 91177308-0d34-0410-b5e6-96231b3b80d8
These derive from the new asm-only masking definitions.
Unfortunately I wasn't able to find a ISel pattern that we could legally
generate for the masking variants. The problem is that since the destination
is v4* we would need VK4 register classes and v4i1 value types to express the
masking. These are however not legal types/classes in AVX512f but only in VL,
so things get complicated pretty quickly. We can revisit this question later
if we have a more pressing need to express something like this.
So the ISel patterns are empty for the masking instructions and the next patch
will add Pat<>s instead to match the intrinsics calls with instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219361 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change.
No change in X86.td.expanded except for the appearance of the new attributes.
The new attributes will be used in the subsequent patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219360 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change.
This enables the generation of masking instructions that don't provide a
ISel pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219358 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I had forgotten to check for NotSlowIncDec in the patterns that can generate
inc/dec for the above pattern (added in D4796).
This currently applies to Atom Silvermont, KNL and SKX.
Test Plan: New checks on atomic_mi.ll
Reviewers: jfb, nadav
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5677
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219336 91177308-0d34-0410-b5e6-96231b3b80d8