Not sure I understand how the temp register gets used,
but this fixes a bug and introduces no regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74446 91177308-0d34-0410-b5e6-96231b3b80d8
fence-atomic-fence down to just the atomic op. This is possible thanks to
X86's relatively strong memory model, which guarantees that locked instructions
(which are used to implement atomics) are implicit fences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74435 91177308-0d34-0410-b5e6-96231b3b80d8
implementation primarily differs from the former in that the asmprinter
doesn't make a zillion decisions about whether or not something will be
RIP relative or not. Instead, those decisions are made by isel lowering
and propagated through to the asm printer. To achieve this, we:
1. Represent RIP relative addresses by setting the base of the X86 addr
mode to X86::RIP.
2. When ISel Lowering decides that it is safe to use RIP, it lowers to
X86ISD::WrapperRIP. When it is unsafe to use RIP, it lowers to
X86ISD::Wrapper as before.
3. This removes isRIPRel from X86ISelAddressMode, representing it with
a basereg of RIP instead.
4. The addressing mode matching logic in isel is greatly simplified.
5. The asmprinter is greatly simplified, notably the "NotRIPRel" predicate
passed through various printoperand routines is gone now.
6. The various symbol printing routines in asmprinter now no longer infer
when to emit (%rip), they just print the symbol.
I think this is a big improvement over the previous situation. It does have
two small caveats though: 1. I implemented a horrible "no-rip" modifier for
the inline asm "P" constraint modifier. This is a short term hack, there is
a much better, but more involved, solution. 2. I had to xfail an
-aggressive-remat testcase because it isn't handling the use of RIP in the
constant-pool reading instruction. This specific test is easy to fix without
-aggressive-remat, which I intend to do next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74372 91177308-0d34-0410-b5e6-96231b3b80d8
a bunch of code from all the targets, and eliminates nondeterministic
ordering of directives being emitted in the output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74096 91177308-0d34-0410-b5e6-96231b3b80d8
decorateName like other stuff instead of special casing _. Also, stick
it into GVStubs and let the normal stub printer print the stub instead
of doing it manually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74090 91177308-0d34-0410-b5e6-96231b3b80d8
C bindings. Change all the backend "Initialize" functions to have C linkage.
Change the "llvm/Config/Targets.def" header to use C-style comments to avoid
compile warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74026 91177308-0d34-0410-b5e6-96231b3b80d8
instructions, which implies that there is an explicit memory operand. There is
(however) no explicit memory operand; although this is a store, the only memory
operand is implicit, indicated by DS:EDI. This causes the table-generation code
for the disassembler to report an error."
Patch by Sean Callanan!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73989 91177308-0d34-0410-b5e6-96231b3b80d8
Support for .text relocations, implementing TargetELFWriter overloaded methods for x86/x86_64.
Use a map to track global values to their symbol table indexes
Code cleanup and small fixes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73894 91177308-0d34-0410-b5e6-96231b3b80d8
a global with that gets printed with the :mem modifier. All operands to lea's
should be handled with the lea32mem operand kind, and this allows the TLS stuff
to do this. There are several better ways to do this, but I went for the minimal
change since I can't really test this (beyond make check).
This also makes the use of EBX explicit in the operand list in the 32-bit,
instead of implicit in the instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73834 91177308-0d34-0410-b5e6-96231b3b80d8
LEA64_32r, eliminating a bunch of modifier logic stuff on addr modes.
Implement support for printing mbb labels as operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73817 91177308-0d34-0410-b5e6-96231b3b80d8
step is to make tblgen generate something more appropriate for MCInst,
and generate calls to operand translation routines where needed.
This includes a bunch of #if 0 code which will slowly be refactored into
something sensible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73810 91177308-0d34-0410-b5e6-96231b3b80d8
implementation. The idea is that we want asmprinting to
work by converting MachineInstrs into a new MCInst class,
then the per-instruction asmprinter works on MCInst. MCInst
and the new asmprinters will not depend on most of the
llvm code generators. This allows building diassemblers
that don't link in the whole llvm code generator. This is
step #1 of many.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73743 91177308-0d34-0410-b5e6-96231b3b80d8
into DarwinTargetAsmInfo.cpp. The remaining differences should
be evaluated. It seems strange that x86/arm has .zerofill but ppc
doesn't, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73742 91177308-0d34-0410-b5e6-96231b3b80d8
initialization of all targets (InitializeAllTargets.h) or assembler
printers (InitializeAllAsmPrinters.h). This is a step toward the
elimination of relinked object files, so that we can build normal
archives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73543 91177308-0d34-0410-b5e6-96231b3b80d8
comes after the DW_CFA_def_cfa_register, because the CFA is really ESP from the
start of the function and only gets an offset when the "subl $xxx,%esp"
instruction happens, not the other way around.
And reapply r72898:
The DWARF unwind info was incorrect. While compiling with
`-fomit-frame-pointer', we would lack the DW_CFA_advance_loc information for a
lot of function, and then they would be `0'. The linker (at least on Darwin)
needs to encode the stack size. In some cases, the stack size is too large to
directly encode. So the linker checks to see if there is a "subl $xxx,%esp"
instruction at the point where the `DW_CFA_def_cfa_offset' says the pc was. If
so, the compact encoding records the offset in the function to where the stack
size is embedded. But because the `DW_CFA_advance_loc' instructions are missing,
it looks before the function and dies.
So, instead of emitting the EH debug label before the stack adjustment
operations, emit it afterwards, right before the frame move stuff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73465 91177308-0d34-0410-b5e6-96231b3b80d8
that push immediate operands of 1, 2, and 4 bytes (extended to the native
register size in each case). The assembly mnemonics are "pushl" and "pushq."
One such instruction appears at the beginning of the "start" function , so this
is essential for accurate disassembly when unwinding."
Patch by Sean Callanan!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73407 91177308-0d34-0410-b5e6-96231b3b80d8
out of sync with regular cc.
The only difference between the tail call cc and the normal
cc was that one parameter register - R9 - was reserved for
calling functions through a function pointer. After time the
tail call cc has gotten out of sync with the regular cc.
We can use R11 which is also caller saved but not used as
parameter register for potential function pointers and
remove the special tail call cc on x86-64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73233 91177308-0d34-0410-b5e6-96231b3b80d8
Emission for globals, using the correct data sections
Function alignment can be computed for each target using TargetELFWriterInfo
Some small fixes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73201 91177308-0d34-0410-b5e6-96231b3b80d8
ABI. The missing piece is support for putting "homogeneous aggregates"
into registers.
Patch by Sandeep Patel!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73095 91177308-0d34-0410-b5e6-96231b3b80d8