that are greater than the vector element type. For example BUILD_VECTOR
of type <1 x i1> with a constant i8 operand.
This patch fixes the assertion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150477 91177308-0d34-0410-b5e6-96231b3b80d8
This folds a simple loop tail into a loop latch. It covers the common (in fortran) case of postincrement loops. It's a "free" way to expose this type of loop to downstream loop optimizations that bail out on non-canonical loops (getLoopLatch is a heavily used check).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150439 91177308-0d34-0410-b5e6-96231b3b80d8
If the DEC node had more than one user, it was doing this lowering but
leaving the original DEC node around and so decrementing twice.
Fixes PR11964.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150356 91177308-0d34-0410-b5e6-96231b3b80d8
v8i8 -> v8i32 on AVX machines. The codegen often scalarizes ANY_EXTEND nodes.
The DAGCombiner has two optimizations that can mitigate the problem. First,
if all of the operands of a BUILD_VECTOR node are extracted from an ZEXT/ANYEXT
nodes, then it is possible to create a new simplified BUILD_VECTOR which uses
UNDEFS/ZERO values to eliminate the scalar ZEXT/ANYEXT nodes.
Second, another dag combine optimization lowers BUILD_VECTOR into a shuffle
vector instruction.
In the case of zext v8i8->v8i32 on AVX, a value in an XMM register is to be
shuffled into a wide YMM register.
This patch modifes the second optimization and allows the creation of
shuffle vectors even when the newly generated vector and the original vector
from which we extract the values are of different types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150340 91177308-0d34-0410-b5e6-96231b3b80d8
Module flags are key-value pairs associated with the module. They include a
'behavior' value, indicating how module flags react when mergine two
files. Normally, it's just the union of the two module flags. But if two module
flags have the same key, then the resulting flags are dictated by the behaviors.
Allowable behaviors are:
Error
Emits an error if two values disagree.
Warning
Emits a warning if two values disagree.
Require
Emits an error when the specified value is not present
or doesn't have the specified value. It is an error for
two (or more) llvm.module.flags with the same ID to have
the Require behavior but different values. There may be
multiple Require flags per ID.
Override
Uses the specified value if the two values disagree. It
is an error for two (or more) llvm.module.flags with the
same ID to have the Override behavior but different
values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150300 91177308-0d34-0410-b5e6-96231b3b80d8
This allows BBVectorize to check the "unknown instruction" list in the
alias sets. This is important to prevent instruction fusing from reordering
function calls. Resolves PR11920.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150250 91177308-0d34-0410-b5e6-96231b3b80d8
is that patterns no longer match for vectors of booleans, because you only get
ConstantDataVector when the vector element type is i8, i16, etc, not when it is
i1). Original commit message:
Remove some dead code and tidy things up now that vectors use ConstantDataVector
instead of always using ConstantVector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150246 91177308-0d34-0410-b5e6-96231b3b80d8
Creates a configurable regalloc pipeline.
Ensure specific llc options do what they say and nothing more: -reglloc=... has no effect other than selecting the allocator pass itself. This patch introduces a new umbrella flag, "-optimize-regalloc", to enable/disable the optimizing regalloc "superpass". This allows for example testing coalscing and scheduling under -O0 or vice-versa.
When a CodeGen pass requires the MachineFunction to have a particular property, we need to explicitly define that property so it can be directly queried rather than naming a specific Pass. For example, to check for SSA, use MRI->isSSA, not addRequired<PHIElimination>.
CodeGen transformation passes are never "required" as an analysis
ProcessImplicitDefs does not require LiveVariables.
We have a plan to massively simplify some of the early passes within the regalloc superpass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150226 91177308-0d34-0410-b5e6-96231b3b80d8
GlobalOpt runs early in the pipeline (before inlining) and complex class
hierarchies often introduce bitcasts or GEPs which weren't optimized away.
Teach it to ignore side-effect free instructions instead of depending on
other passes to remove them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150174 91177308-0d34-0410-b5e6-96231b3b80d8
* Most of the transforms come through intact by having each transformed load or
store copy the ordering and synchronization scope of the original.
* The transform that turns a global only accessed in main() into an alloca
(since main is non-recursive) with a store of the initial value uses an
unordered store, since it's guaranteed to be the first thing to happen in main.
(Threads may have started before main (!) but they can't have the address of a
function local before the point in the entry block we insert our code.)
* The heap-SRoA transforms are disabled in the face of atomic operations. This
can probably be improved; it seems odd to have atomic accesses to an alloca
that doesn't have its address taken.
AnalyzeGlobal keeps track of the strongest ordering found in any use of the
global. This is more information than we need right now, but it's cheap to
compute and likely to be useful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149847 91177308-0d34-0410-b5e6-96231b3b80d8
logic by half: isOnlyReachableViaThisEdge was trying to be clever and
handle the case of a branch to a basic block which is contained in a
loop. This costs a domtree lookup and is completely useless due to
GVN's position in the pass pipeline: all loops have preheaders at this
point, which means it is enough for isOnlyReachableViaThisEdge to check
that Dst has only one predecessor. (I checked this theoretical argument
by running over the entire nightly testsuite, and indeed it is so!).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149838 91177308-0d34-0410-b5e6-96231b3b80d8
By default, boost the chain depth contribution of loads and stores. This will allow a load/store pair to vectorize even when it would not otherwise be long enough to satisfy the chain depth requirement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149761 91177308-0d34-0410-b5e6-96231b3b80d8
In this patch we optimize this pattern and convert the sequence into extract op of a narrow type.
This allows the BUILD_VECTOR dag optimizations to construct efficient shuffle operations in many cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149692 91177308-0d34-0410-b5e6-96231b3b80d8
needed to emit a 64-bit gp-relative relocation entry. Make changes necessary
for emitting jump tables which have entries with directive .gpdword. This patch
does not implement the parts needed for direct object emission or JIT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149668 91177308-0d34-0410-b5e6-96231b3b80d8
PHI nodes which were matched, rather than climbing up the
original PHI node's operands to rediscover PHI nodes for
recording, since the PHI nodes found that are not
necessarily part of the matched set.
This fixes rdar://10589171.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149654 91177308-0d34-0410-b5e6-96231b3b80d8