SplitKit will soon need two copies of these data structures, and the
algorithms will also be useful when LiveIntervalAnalysis becomes
independent of LiveVariables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139572 91177308-0d34-0410-b5e6-96231b3b80d8
Splitting a landing pad takes considerable care because of PHIs and other
nasties. The problem is that the jump table needs to jump to the landing pad
block. However, the landing pad block can be jumped to only by an invoke
instruction. So we clone the landingpad instruction into its own basic block,
have the invoke jump to there. The landingpad instruction's basic block's
successor is now the target for the jump table.
But because of PHI nodes, we need to create another basic block for the jump
table to jump to. This is definitely a hack, because the values for the PHI
nodes may not be defined on the edge from the jump table. But that's okay,
because the jump table is simply a construct to mimic what is happening in the
CFG. So the values are mysteriously there, even though there is no value for the
PHI from the jump table's edge (hence calling this a hack).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139545 91177308-0d34-0410-b5e6-96231b3b80d8
which is relevant with canonical IVs. Anything else being checked by
these tests is already covered by early CSE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139535 91177308-0d34-0410-b5e6-96231b3b80d8
No tests; these changes aren't really interesting in the sense that the logic is the same for volatile and atomic.
I believe this completes all of the changes necessary for the optimizer to handle loads and stores correctly. I'm going to try and come up with some additional testing, though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139533 91177308-0d34-0410-b5e6-96231b3b80d8
However with this fix it does now.
Basically the operand order for the x86 target specific node
is not the same as the instruction, but since the intrinsic need that
specific order at the instruction definition, just change the order
during legalization. Also, there were some wrong invertions of condition
codes, such as GE => LE, GT => LT, fix that too. Fix PR10907.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139528 91177308-0d34-0410-b5e6-96231b3b80d8
SplitKit always computes a complement live range to cover the places
where the original live range was live, but no explicit region has been
allocated.
Currently, the complement live range is created to be as small as
possible - it never overlaps any of the regions. This minimizes
register pressure, but if the complement is going to be spilled anyway,
that is not very important. The spiller will eliminate redundant
spills, and hoist others by making the spill slot live range overlap
some of the regions created by splitting. Stack slots are cheap.
This patch adds the interface to enable spill modes in SplitKit. In
spill mode, SplitKit will assume that the complement is going to spill,
so it will allow it to overlap regions in order to avoid back-copies.
By doing some of the spiller's work early, the complement live range
becomes simpler. In some cases, it can become much simpler because no
extra PHI-defs are required. This will speed up both splitting and
spilling.
This is only the interface to enable spill modes, no implementation yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139500 91177308-0d34-0410-b5e6-96231b3b80d8
Undo the changes from r139285 which added custom lowering to vselect.
Add tablegen lowering for vselect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139479 91177308-0d34-0410-b5e6-96231b3b80d8
assert("not implemented for target shuffle node");
to:
assert(0 && "not implemented for target shuffle node");
This causes a test failure in CodeGen/X86/palignr.ll which has
been marked as XFAIL for the time being.
Test failure filed at PR10901.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139454 91177308-0d34-0410-b5e6-96231b3b80d8