Split Support/Registry.h into two files so that we have less to
recompile every time CommandLine.h is changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62312 91177308-0d34-0410-b5e6-96231b3b80d8
SingleSource/UnitTests/2007-04-25-weak.c in JIT mode. The test
now passes on systems which are able to produce a correct
reference output to compare with.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61674 91177308-0d34-0410-b5e6-96231b3b80d8
This is a short term workaround. The current solution is for the JIT memory manager to manage code and data memory separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58688 91177308-0d34-0410-b5e6-96231b3b80d8
Since the ARM constant pool handling supercedes the standard LLVM constant
pool entirely, the JIT emitter does not allocate space for the constants,
nor initialize the memory. The constant pool is considered part of the
instruction stream.
Likewise, when resolving relocations into the constant pool, a hook into
the target back end is used to resolve from the constant ID# to the
address where the constant is stored.
For now, the support in the ARM emitter is limited to 32-bit integer. Future
patches will expand this to the full range of constants necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58338 91177308-0d34-0410-b5e6-96231b3b80d8
variable is moved to the execution engine. The JIT calls the TargetJITInfo
to allocate thread local storage. Currently, only linux/x86 knows how to
allocate thread local global variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58142 91177308-0d34-0410-b5e6-96231b3b80d8
this handling to work properly for modifying stub functions, relocations
back to entry points after JIT compilation, etc..
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57013 91177308-0d34-0410-b5e6-96231b3b80d8
s/ParamAttr/Attribute/g
s/PAList/AttrList/g
s/FnAttributeWithIndex/AttributeWithIndex/g
s/FnAttr/Attribute/g
This sets the stage
- to implement function notes as function attributes and
- to distinguish between function attributes and return value attributes.
This requires corresponding changes in llvm-gcc and clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56622 91177308-0d34-0410-b5e6-96231b3b80d8
whose darwin code was written after the ability to dynamically register frames,
we need to do special hacks to make things work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55507 91177308-0d34-0410-b5e6-96231b3b80d8
Also skip indirect encoding for platforms that ask for one: we direclty
write an address, not a pointer to the address.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54987 91177308-0d34-0410-b5e6-96231b3b80d8
model, except for external calls; this makes
addressing modes PC-relative. Incomplete.
The assertion at the top of Emitter::runOnMachineFunction
was obviously bogus (always true) so I removed it.
If someone knows what the correct test should be to cover
all the various targets, please fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54656 91177308-0d34-0410-b5e6-96231b3b80d8
Evan broke it in r54523 by adding a parameter in the implementation without
updating the header correspondingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54555 91177308-0d34-0410-b5e6-96231b3b80d8
are allocated in the same buffer as the code,
jump tables, etc.
The default JIT memory manager does not handle buffer
overflow well. I didn't introduce this and I'm not
attempting to fix it here, but it is more likely to
be hit now since we're putting more stuff in the
buffer. This affects one test that I know of so far,
MultiSource/Benchmarks/NPB-serial/is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54442 91177308-0d34-0410-b5e6-96231b3b80d8
the need for a flavor operand, and add a new SDNode subclass,
LabelSDNode, for use with them to eliminate the need for a label id
operand.
Change instruction selection to let these label nodes through
unmodified instead of creating copies of them. Teach the MachineInstr
emitter how to emit a MachineInstr directly from an ISD label node.
This avoids the need for allocating SDNodes for the label id and
flavor value, as well as SDNodes for each of the post-isel label,
label id, and label flavor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52943 91177308-0d34-0410-b5e6-96231b3b80d8
InvalidateInstructionCache method instead of calling through
a hook on the JIT. This is a host feature, not a target feature.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52734 91177308-0d34-0410-b5e6-96231b3b80d8
1. The "JITState" object creates a PassManager with the ModuleProvider that the
jit is created with. If the ModuleProvider is removed and deleted, the
PassManager is invalid.
2. The Global maps in the JIT were not invalidated with a ModuleProvider was
removed. This could lead to a case where the Module would be freed, and a
new Module with Globals at the same addresses could return invalid results.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51384 91177308-0d34-0410-b5e6-96231b3b80d8
are represented as "weak", but there are subtle differences
in some cases on Darwin, so we need both. The intent
is that "common" will behave identically to "weak" unless
somebody changes their target to do something else.
No functional change as yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51118 91177308-0d34-0410-b5e6-96231b3b80d8
several things that were neither in an anonymous namespace nor static
but not intended to be global.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51017 91177308-0d34-0410-b5e6-96231b3b80d8
function has already been codegen'd. This is required by the Java class loading
mechanism which executes Java code when materializing a function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49988 91177308-0d34-0410-b5e6-96231b3b80d8
Specifically, introduction of XXX::Create methods
for Users that have a potentially variable number of
Uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49277 91177308-0d34-0410-b5e6-96231b3b80d8
tools. This is currently only enabled on the mac, but could easily be
supported by other hosts that are interested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49207 91177308-0d34-0410-b5e6-96231b3b80d8
was actually passing a completely incorrect size to sys_icache_invalidate.
Instead of having the JITEmitter do this (which doesn't have the correct
size), just make the target sync its own stubs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46354 91177308-0d34-0410-b5e6-96231b3b80d8
for non-function GV relocations that require function address stubs (e.g. Mac OS X in non-static mode).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45527 91177308-0d34-0410-b5e6-96231b3b80d8
endianness of the target not of the host. Done by the
simple expedient of reversing bytes for primitive types
if the host and target endianness don't match. This is
correct for integer and pointer types. I don't know if
it is correct for floating point types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45039 91177308-0d34-0410-b5e6-96231b3b80d8
put it in a new header System/Host.h instead.
Instead of getting the endianness from configure,
calculate it directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44959 91177308-0d34-0410-b5e6-96231b3b80d8
using the minimum possible number of bytes. For little
endian targets run on little endian machines, apints are
stored in memory from LSB to MSB as before. For big endian
targets on big endian machines they are stored from MSB to
LSB which wasn't always the case before (if the target and
host endianness doesn't match values are stored according
to the host's endianness). Doing this requires knowing the
endianness of the host, which is determined when configuring -
thanks go to Anton for this. Only having access to little
endian machines I was unable to properly test the big endian
part, which is also the most complicated...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44796 91177308-0d34-0410-b5e6-96231b3b80d8
to create a JIT. This lets you specify JIT-specific configuration items
like the JITMemoryManager to use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44647 91177308-0d34-0410-b5e6-96231b3b80d8
in this call:
Result.IntVal = APInt(80, 2, x);
What is x?
uint16_t x[8];
I deduce that the APInt constructor being used is this one:
APInt(uint32_t numBits, uint64_t val, bool isSigned = false);
rather than this one:
APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]);
That doesn't seem right! This fix compiles but is otherwise completely
untested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44400 91177308-0d34-0410-b5e6-96231b3b80d8
The meaning of getTypeSize was not clear - clarifying it is important
now that we have x86 long double and arbitrary precision integers.
The issue with long double is that it requires 80 bits, and this is
not a multiple of its alignment. This gives a primitive type for
which getTypeSize differed from getABITypeSize. For arbitrary precision
integers it is even worse: there is the minimum number of bits needed to
hold the type (eg: 36 for an i36), the maximum number of bits that will
be overwriten when storing the type (40 bits for i36) and the ABI size
(i.e. the storage size rounded up to a multiple of the alignment; 64 bits
for i36).
This patch removes getTypeSize (not really - it is still there but
deprecated to allow for a gradual transition). Instead there is:
(1) getTypeSizeInBits - a number of bits that suffices to hold all
values of the type. For a primitive type, this is the minimum number
of bits. For an i36 this is 36 bits. For x86 long double it is 80.
This corresponds to gcc's TYPE_PRECISION.
(2) getTypeStoreSizeInBits - the maximum number of bits that is
written when storing the type (or read when reading it). For an
i36 this is 40 bits, for an x86 long double it is 80 bits. This
is the size alias analysis is interested in (getTypeStoreSize
returns the number of bytes). There doesn't seem to be anything
corresponding to this in gcc.
(3) getABITypeSizeInBits - this is getTypeStoreSizeInBits rounded
up to a multiple of the alignment. For an i36 this is 64, for an
x86 long double this is 96 or 128 depending on the OS. This is the
spacing between consecutive elements when you form an array out of
this type (getABITypeSize returns the number of bytes). This is
TYPE_SIZE in gcc.
Since successive elements in a SequentialType (arrays, pointers
and vectors) need to be aligned, the spacing between them will be
given by getABITypeSize. This means that the size of an array
is the length times the getABITypeSize. It also means that GEP
computations need to use getABITypeSize when computing offsets.
Furthermore, if an alloca allocates several elements at once then
these too need to be aligned, so the size of the alloca has to be
the number of elements multiplied by getABITypeSize. Logically
speaking this doesn't have to be the case when allocating just
one element, but it is simpler to also use getABITypeSize in this
case. So alloca's and mallocs should use getABITypeSize. Finally,
since gcc's only notion of size is that given by getABITypeSize, if
you want to output assembler etc the same as gcc then getABITypeSize
is the size you want.
Since a store will overwrite no more than getTypeStoreSize bytes,
and a read will read no more than that many bytes, this is the
notion of size appropriate for alias analysis calculations.
In this patch I have corrected all type size uses except some of
those in ScalarReplAggregates, lib/Codegen, lib/Target (the hard
cases). I will get around to auditing these too at some point,
but I could do with some help.
Finally, I made one change which I think wise but others might
consider pointless and suboptimal: in an unpacked struct the
amount of space allocated for a field is now given by the ABI
size rather than getTypeStoreSize. I did this because every
other place that reserves memory for a type (eg: alloca) now
uses getABITypeSize, and I didn't want to make an exception
for unpacked structs, i.e. I did it to make things more uniform.
This only effects structs containing long doubles and arbitrary
precision integers. If someone wants to pack these types more
tightly they can always use a packed struct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43620 91177308-0d34-0410-b5e6-96231b3b80d8
input. APInt unfortunately zero-extends signed integers, so Dale
modified the function to expect zero-extended input. Make this
assumption explicit in the function name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42732 91177308-0d34-0410-b5e6-96231b3b80d8
use APFloat for int-to-float/double; use
round-to-nearest for these (implementation-defined,
seems to match gcc).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42484 91177308-0d34-0410-b5e6-96231b3b80d8
bit width instead of number of words allocated, which
makes it actually work for int->APF conversions.
Adjust callers. Add const to one of the APInt constructors
to prevent surprising match when called with const
argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42210 91177308-0d34-0410-b5e6-96231b3b80d8
Use APFloat in UpgradeParser and AsmParser.
Change all references to ConstantFP to use the
APFloat interface rather than double. Remove
the ConstantFP double interfaces.
Use APFloat functions for constant folding arithmetic
and comparisons.
(There are still way too many places APFloat is
just a wrapper around host float/double, but we're
getting there.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41747 91177308-0d34-0410-b5e6-96231b3b80d8
JITer (short path is added for darwin). This is needed to properly JIT llvm-gcc-4.2-built
binaries, since cxa_atexit is enabled by default on much more targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40600 91177308-0d34-0410-b5e6-96231b3b80d8
This commit fixes two things. One is a pair of VStudio compiler errors stemming from variables
which defined within the for loop statement and also within the body of the for loop. I fixed these
by renaming one of the two variables. Additionally, I've made the Function*->ExFunc map in
ExternalFunctions.cpp a ManagedStatic object, so that cleanup will be done on llvm_shutdown. In repeated
uses of the interpreter, where the same Function* address may get used for completely differnet functions,
this was causing a crash.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40558 91177308-0d34-0410-b5e6-96231b3b80d8
Avoid overwriting the APInt instance with 0 bytes which causes the bitwidth
to be set to 0 (illegal) producing a subsequent assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37391 91177308-0d34-0410-b5e6-96231b3b80d8
turn "putchar" calls into _IO_putc calls which is a lower-level interface.
This patch allows these calls to be executed by lli in interpreter mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37254 91177308-0d34-0410-b5e6-96231b3b80d8
on. This helps to speed up the debugging time by showing computational
results as the program executes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37095 91177308-0d34-0410-b5e6-96231b3b80d8
extension is needed because the constructor for the Destination value
causes the APInt to have a bit width of 1.
Patch by Guoling Han.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36733 91177308-0d34-0410-b5e6-96231b3b80d8
incorrect results (canonicalization was dropped several commits ago).
2. Add support for fscanf.
3. Suppress a warning about cast to pointer from non-pointer-sized integer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36482 91177308-0d34-0410-b5e6-96231b3b80d8
forcing every small argument of every function regardless of attributes or
calling convention to be expanded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36174 91177308-0d34-0410-b5e6-96231b3b80d8
* Rename the FunctionType* parameter from M to FT on all the functions.
* Implement a fix for PR1293 by just asserting that library functions that
must return pointers should have pointer typed results. This just makes
sure that we don't attempt to use an uninitialized integer or something
later on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35508 91177308-0d34-0410-b5e6-96231b3b80d8
to make a copy of the GenericValue.
2. Fix a copy & paste bug in StoreValueToMemory where 64-bit values were
truncated to 32
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34958 91177308-0d34-0410-b5e6-96231b3b80d8
handling for integer of various sizes. GenericValue now has just a single
integer field of type APInt. We use its facilities directly in the
execution of all instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34951 91177308-0d34-0410-b5e6-96231b3b80d8
Target DataLayout incorrectly. For now, we'll trust that the module has
got the correct DataLayout. In the future, this needs to be changed to
tell the TargetData to be "current host".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34947 91177308-0d34-0410-b5e6-96231b3b80d8
field, of type APInt, instead of multiple integer fields. Also, get rid of
the special endianness code in StoreValueToMemory and LoadValueToMemory.
ExecutionEngine is always used to execute on the host platform so this is
now unnecessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34946 91177308-0d34-0410-b5e6-96231b3b80d8
have been removed and dealt with. The interpreter should now be able to
execute any LLVM program using any bit width.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34884 91177308-0d34-0410-b5e6-96231b3b80d8
Move the getConstantExpr function towards the end of the file so we don't
need a dozen forward declarations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34877 91177308-0d34-0410-b5e6-96231b3b80d8
ensure they are cleaned up when the stack frame exits.
2. Move a function to the Execution.cpp file where it belongs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34876 91177308-0d34-0410-b5e6-96231b3b80d8
While preparing http://llvm.org/PR1198 I noticed several asserts
protecting unprepared code from i128 types that weren't actually failing
when they should because they were written as assert("foo") instead of
something like assert(0 && "foo"). This patch fixes all the cases that a
quick grep found.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34267 91177308-0d34-0410-b5e6-96231b3b80d8
This feature is needed in order to support shifts of more than 255 bits
on large integer types. This changes the syntax for llvm assembly to
make shl, ashr and lshr instructions look like a binary operator:
shl i32 %X, 1
instead of
shl i32 %X, i8 1
Additionally, this should help a few passes perform additional optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33776 91177308-0d34-0410-b5e6-96231b3b80d8
The Module::setEndianness and Module::setPointerSize methods have been
removed. Instead you can get/set the DataLayout. Adjust thise accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33530 91177308-0d34-0410-b5e6-96231b3b80d8
a small inline function to sign extend a uint64_t value based on its
type's bitwidth. This function is then used in both executeSExtInst and
the various executeICMP_S** functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33403 91177308-0d34-0410-b5e6-96231b3b80d8
This is the final patch for this PR. It implements some minor cleanup
in the use of IntegerType, to wit:
1. Type::getIntegerTypeMask -> IntegerType::getBitMask
2. Type::Int*Ty changed to IntegerType* from Type*
3. ConstantInt::getType() returns IntegerType* now, not Type*
This also fixes PR1120.
Patch by Sheng Zhou.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33370 91177308-0d34-0410-b5e6-96231b3b80d8
not to overflow 64-bits and end up with a 0 mask. This caused i64 values to
always be stored as 0 with lots of consequential damage to nightly test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33335 91177308-0d34-0410-b5e6-96231b3b80d8
sufficient to get llvm-test/SingleSource/UnitTests/Integer/general-test.ll
working with lli in interpreter mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33321 91177308-0d34-0410-b5e6-96231b3b80d8
1. Fix logic for executeGEP. Only 32-bit and 64-bit integer types are
acceptable as indices.
2. Ensure that all integer cast operations truncate their result to the
integer size of the operand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33318 91177308-0d34-0410-b5e6-96231b3b80d8
rename Type::getIntegralTypeMask to Type::getIntegerTypeMask.
This makes naming much more consistent. For example, there are now no longer any
instances of IntegerType that are not considered isInteger! :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33225 91177308-0d34-0410-b5e6-96231b3b80d8
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33113 91177308-0d34-0410-b5e6-96231b3b80d8
recommended that getBoolValue be replaced with getZExtValue and that
get(bool) be replaced by get(const Type*, uint64_t). This implements
those changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33110 91177308-0d34-0410-b5e6-96231b3b80d8
Merge ConstantIntegral and ConstantBool into ConstantInt.
Remove ConstantIntegral and ConstantBool from LLVM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33073 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes the SetCC instructions and replaces them with the ICmp
and FCmp instructions. The SetCondInst instruction has been removed and
been replaced with ICmpInst and FCmpInst.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32751 91177308-0d34-0410-b5e6-96231b3b80d8