and better control the abstraction. Rename the type
to MVT. To update out-of-tree patches, the main
thing to do is to rename MVT::ValueType to MVT, and
rewrite expressions like MVT::getSizeInBits(VT) in
the form VT.getSizeInBits(). Use VT.getSimpleVT()
to extract a MVT::SimpleValueType for use in switch
statements (you will get an assert failure if VT is
an extended value type - these shouldn't exist after
type legalization).
This results in a small speedup of codegen and no
new testsuite failures (x86-64 linux).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52044 91177308-0d34-0410-b5e6-96231b3b80d8
This eliminates the need for several awkward casts, including
the last dynamic_cast under lib/Target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51091 91177308-0d34-0410-b5e6-96231b3b80d8
than silently generate invalid code.
llvm-gcc does not currently use VAArgInst; it lowers va_arg in the
front-end.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50930 91177308-0d34-0410-b5e6-96231b3b80d8
Note, some of the code will be moved into target independent part of DAG combiner in a subsequent patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50918 91177308-0d34-0410-b5e6-96231b3b80d8
Move platform independent code (lowering of possibly overwritten
arguments, check for tail call optimization eligibility) from
target X86ISelectionLowering.cpp to TargetLowering.h and
SelectionDAGISel.cpp.
Initial PowerPC tail call implementation:
Support ppc32 implemented and tested (passes my tests and
test-suite llvm-test).
Support ppc64 implemented and half tested (passes my tests).
On ppc tail call optimization is performed if
caller and callee are fastcc
call is a tail call (in tail call position, call followed by ret)
no variable argument lists or byval arguments
option -tailcallopt is enabled
Supported:
* non pic tail calls on linux/darwin
* module-local tail calls on linux(PIC/GOT)/darwin(PIC)
* inter-module tail calls on darwin(PIC)
If constraints are not met a normal call will be emitted.
A test checking the argument lowering behaviour on x86-64 was added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50477 91177308-0d34-0410-b5e6-96231b3b80d8
memcpy/memset expansion. It was a bug for the SVOffset value
to be used in the actual address calculations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50359 91177308-0d34-0410-b5e6-96231b3b80d8
- Make targetlowering.h fit in 80 cols.
- Make LowerAsmOperandForConstraint const.
- Make lowerXConstraint -> LowerXConstraint
- Make LowerXConstraint return a const char* instead of taking a string byref.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50312 91177308-0d34-0410-b5e6-96231b3b80d8
optimized x86-64 (and x86) calls so that they work (... at least for
my test cases).
Should fix the following problems:
Problem 1: When i introduced the optimized handling of arguments for
tail called functions (using a sequence of copyto/copyfrom virtual
registers instead of always lowering to top of the stack) i did not
handle byval arguments correctly e.g they did not work at all :).
Problem 2: On x86-64 after the arguments of the tail called function
are moved to their registers (which include ESI/RSI etc), tail call
optimization performs byval lowering which causes xSI,xDI, xCX
registers to be overwritten. This is handled in this patch by moving
the arguments to virtual registers first and after the byval lowering
the arguments are moved from those virtual registers back to
RSI/RDI/RCX.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49584 91177308-0d34-0410-b5e6-96231b3b80d8
on any current target and aren't optimized in DAGCombiner. Instead
of using intermediate nodes, expand the operations, choosing between
simple loads/stores, target-specific code, and library calls,
immediately.
Previously, the code to emit optimized code for these operations
was only used at initial SelectionDAG construction time; now it is
used at all times. This fixes some cases where rep;movs was being
used for small copies where simple loads/stores would be better.
This also cleans up code that checks for alignments less than 4;
let the targets make that decision instead of doing it in
target-independent code. This allows x86 to use rep;movs in
low-alignment cases.
Also, this fixes a bug that resulted in the use of rep;stos for
memsets of 0 with non-constant memory size when the alignment was
at least 4. It's better to use the library in this case, which
can be significantly faster when the size is large.
This also preserves more SourceValue information when memory
intrinsics are lowered into simple loads/stores.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49572 91177308-0d34-0410-b5e6-96231b3b80d8
x86-64 return conventions correct, but was never enabled.
We can now do the "right thing" with multiple return values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48635 91177308-0d34-0410-b5e6-96231b3b80d8
return ValueType can depend its operands' ValueType.
This is a cosmetic change, no functionality impacted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48145 91177308-0d34-0410-b5e6-96231b3b80d8
isel'ing value preserving FP roundings from one fp stack reg to another
into a noop, instead of stack traffic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48093 91177308-0d34-0410-b5e6-96231b3b80d8
For x86, if sse2 is available, it's not a good idea since cvtss2sd is slower than a movsd load and it prevents load folding. On x87, it's important to shrink fp constant since fldt is very expensive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47931 91177308-0d34-0410-b5e6-96231b3b80d8
calls. Before arguments that could overwrite each other were
explicitly lowered to a stack slot, not giving the register allocator
a chance to optimize. Now a sequence of copyto/copyfrom virtual
registers ensures that arguments are loaded in (virtual) registers
before they are lowered to the stack slot (and might overwrite each
other). Also parameter stack slots are marked mutable for
(potentially) tail calling functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47593 91177308-0d34-0410-b5e6-96231b3b80d8
- X86 now normalize SCALAR_TO_VECTOR to (BIT_CONVERT (v4i32 SCALAR_TO_VECTOR)). Get rid of X86ISD::S2VEC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47290 91177308-0d34-0410-b5e6-96231b3b80d8
Add an overload that supports the uint64_t interface for use by clients
that haven't been updated yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47039 91177308-0d34-0410-b5e6-96231b3b80d8
unifying the copied algorithms and saving over 500 LOC. There should
be no functionality change, but please test on your favorite x86
target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45627 91177308-0d34-0410-b5e6-96231b3b80d8
1) Change the interface to TargetLowering::ExpandOperationResult to
take and return entire NODES that need a result expanded, not just
the value. This allows us to handle things like READCYCLECOUNTER,
which returns two values.
2) Implement (extremely limited) support in LegalizeDAG::ExpandOp for MERGE_VALUES.
3) Reimplement custom lowering in LegalizeDAGTypes in terms of the new
ExpandOperationResult. This makes the result simpler and fully
general.
4) Implement (fully general) expand support for MERGE_VALUES in LegalizeDAGTypes.
5) Implement ExpandOperationResult support for ARM f64->i64 bitconvert and ARM
i64 shifts, allowing them to work with LegalizeDAGTypes.
6) Implement ExpandOperationResult support for X86 READCYCLECOUNTER and FP_TO_SINT,
allowing them to work with LegalizeDAGTypes.
LegalizeDAGTypes now passes several more X86 codegen tests when enabled and when
type legalization in LegalizeDAG is ifdef'd out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44300 91177308-0d34-0410-b5e6-96231b3b80d8