When we have an instruction for this (and, thus, don't generate a runtime
call), we need to custom type legalize this (in a trivial way, just as we do
for fp_to_sint).
Fixes PR23173.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234561 91177308-0d34-0410-b5e6-96231b3b80d8
For the most common ones (such as fadd), we already did the promotion.
Do the same thing for all the others.
Currently, we'll just crash/assert on all these operations, as
there's no hardware or libcall support whatsoever.
f16 (half) is specified as an interchange - not arithmetic - format,
and is expected to be promoted to single-precision for arithmetic
operations.
While there, teach the legalizer about promoting some of the (mostly
floating-point) operations that we never needed before.
Differential Revision: http://reviews.llvm.org/D8648
See related discussion on the thread for: http://reviews.llvm.org/D8755
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234550 91177308-0d34-0410-b5e6-96231b3b80d8
We already do:
concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
When the scalar is legal.
When it's not, but is a truncated legal scalar, we can also do:
concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
Which is equivalent, since the upper lanes are undef anyway.
While there, teach the combine to look at more than 2 operands.
Differential Revision: http://reviews.llvm.org/D8883
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234530 91177308-0d34-0410-b5e6-96231b3b80d8
The integer extend optimization tries to fold the extend into the load
instruction. This requires us to identify if the extend has already been
emitted or not and act accordingly on it.
The check that was originally performed for this was not sufficient. Besides
checking the ValueMap for a mapped register we also need to check if the
virtual register has already an associated machine instruction that defines it.
This fixes rdar://problem/20470788.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234529 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, llvm (backend) doesn't know cortex-r4, even though it is the
default target for armv7r. Using "--target=armv7r-arm-none-eabi" provokes
'cortex-r4' is not a recognized processor for this target' by llvm.
This patch adds support for cortex-r4 and, very closely related, r4f.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234486 91177308-0d34-0410-b5e6-96231b3b80d8
restrictions when choosing a type for small-memcpy inlining in
SelectionDAGBuilder.
This ensures that the loads and stores output for the memcpy won't be further
expanded during legalization, which would cause the total number of instructions
for the memcpy to exceed (often significantly) the inlining thresholds.
<rdar://problem/17829180>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234462 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed insert point for allocas created for demoted values.
Clear the nested landing pad list after it has been processed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234433 91177308-0d34-0410-b5e6-96231b3b80d8
The bug manifests when there are two loads and two stores chained as follows in
a DAG,
(ld v3f32) -> (st f32) -> (ld v3f32) -> (st f32)
and the stores' values are extracted from the preceding vector loads.
MergeConsecutiveStores would replace the first store in the chain with the
merged vector store, which would create a cycle between the merged store node
and the last load node that appears in the chain.
This commits fixes the bug by replacing the last store in the chain instead.
rdar://problem/20275084
Differential Revision: http://reviews.llvm.org/D8849
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234430 91177308-0d34-0410-b5e6-96231b3b80d8
(Re-apply r234361 with a fix and a testcase for PR23157)
Both run-time pointer checking and the dependence analysis are capable
of dealing with uniform addresses. I.e. it's really just an orthogonal
property of the loop that the analysis computes.
Run-time pointer checking will only try to reason about SCEVAddRec
pointers or else gives up. If the uniform pointer turns out the be a
SCEVAddRec in an outer loop, the run-time checks generated will be
correct (start and end bounds would be equal).
In case of the dependence analysis, we work again with SCEVs. When
compared against a loop-dependent address of the same underlying object,
the difference of the two SCEVs won't be constant. This will result in
returning an Unknown dependence for the pair.
When compared against another uniform access, the difference would be
constant and we should return the right type of dependence
(forward/backward/etc).
The changes also adds support to query this property of the loop and
modify the vectorizer to use this.
Patch by Ashutosh Nema!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234424 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Even though there is no 2nd register operand in the "lw/sw $8, symbol" case, we still try to find one,
and we end up with $0, which makes us generate an unnecessary "addu $8, $8, $0" (a.k.a. "move $8, $8").
We can avoid this by checking if the 2nd register operand is different from $0, before generating the addu.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8055
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234406 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
They are of the form "bnezl/beqzl $rs, offset" and expand to "bnel/beql $rs, $zero, offset".
These instructions are used in Linux inline assembly.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8540
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234401 91177308-0d34-0410-b5e6-96231b3b80d8
One could make the argument for writing it immediately after the ELF header,
but writing it in the middle of the sections like we were doing just makes
it harder for no reason.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234400 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Looks like new code from [[ http://reviews.llvm.org/rL222057 | rL222057 ]] doesn't account for early `return` in `ARMFrameLowering::emitPrologue`, which leads to loosing `.cfi_def_cfa_offset` directive for functions without stack frame.
Reviewers: echristo, rengolin, asl, t.p.northover
Reviewed By: t.p.northover
Subscribers: llvm-commits, rengolin, aemerson
Differential Revision: http://reviews.llvm.org/D8606
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234399 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
These AssemblerPredicate's are unnecessary and actually make some instructions unusable when assembling pre-MIPS32 ISAs.
For example, this was causing the IAS to reject the 'j' instruction for MIPS I-V.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8300
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234398 91177308-0d34-0410-b5e6-96231b3b80d8
This is currently considered experimental, but most of the more
commonly used instructions should work.
So far only SI has been extensively tested, CI and VI probably work too,
but may be buggy. The current set of tests cases do not give complete
coverage, but I think it is sufficient for an experimental assembler.
See the documentation in R600Usage for more information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234381 91177308-0d34-0410-b5e6-96231b3b80d8
We weren't checking the sign of the floating point immediate before translating
it to "fmov sD, wzr". Similarly for D-regs.
Technically "movi vD.2s, #0x80, lsl #24" would work most of the time, but it's
not a blessed alias (and I don't think it should be since people expect writing
sD to zero out the high lanes, and there's no dD equivalent). So an error it is.
rdar://20455398
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234372 91177308-0d34-0410-b5e6-96231b3b80d8
Both run-time pointer checking and the dependence analysis are capable
of dealing with uniform addresses. I.e. it's really just an orthogonal
property of the loop that the analysis computes.
Run-time pointer checking will only try to reason about SCEVAddRec
pointers or else gives up. If the uniform pointer turns out the be a
SCEVAddRec in an outer loop, the run-time checks generated will be
correct (start and end bounds would be equal).
In case of the dependence analysis, we work again with SCEVs. When
compared against a loop-dependent address of the same underlying object,
the difference of the two SCEVs won't be constant. This will result in
returning an Unknown dependence for the pair.
When compared against another uniform access, the difference would be
constant and we should return the right type of dependence
(forward/backward/etc).
The changes also adds support to query this property of the loop and
modify the vectorizer to use this.
Patch by Ashutosh Nema!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234361 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is not possible when using the IAS for MIPS, but it is possible when using the IAS for other architectures and when using GAS for MIPS.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8578
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234316 91177308-0d34-0410-b5e6-96231b3b80d8
This also moves it earlier so that it they are produced before we print
an end symbol for the data section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234315 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The loop which emits AssemblerPredicate conditions also links them together by emitting a '&&'.
If the 1st predicate is not an AssemblerPredicate, while the 2nd one is, nothing gets emitted for the 1st one, but we still emit the '&&' because of the 2nd predicate.
This generated code looks like "( && Cond2)" and is invalid.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D8294
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234312 91177308-0d34-0410-b5e6-96231b3b80d8
Fast isel used to zero extends immediates to 64 bits. This normally goes
unnoticed because the value is truncated to 32 bits for output.
Two cases were it is noticed:
* We fail to use smaller encodings.
* If the original constant was smaller than i32.
In the tests using i1 constants, codegen would change to use -1, which is fine
(and matches what regular isel does) since only the lowest bit is then used.
Instead, this patch then changes the ir to use i8 constants, which looks more
like what clang produces.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234249 91177308-0d34-0410-b5e6-96231b3b80d8
The uselist isn't enough to infer anything about the lifetime of such
allocas. If we want to re-add this optimization, we will need to
leverage lifetime markers to do it.
Fixes PR23122.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234196 91177308-0d34-0410-b5e6-96231b3b80d8
After recognising that a certain narrow instruction might need a relocation to
be represented, we used to unconditionally relax it to a Thumb2 instruction to
permit this. Unfortunately, some CPUs (e.g. v6m) don't even have most Thumb2
instructions, so we end up emitting a completely invalid instruction.
Theoretically, ELF does have relocations for these situations; but they are
fairly unusable with such short ranges and the ABI document even says they're
documented "for completeness". So an error is probably better there too.
rdar://20391953
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234195 91177308-0d34-0410-b5e6-96231b3b80d8
This patch allows SSE4.1 targets to use (V)PINSRB to create 16i8 vectors by inserting i8 scalars directly into a XMM register instead of merging pairs of i8 scalars into a i16 and using the SSE2 PINSRW instruction.
This allows folding of byte loads and reduces scalar register usage as well.
Differential Revision: http://reviews.llvm.org/D8839
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234193 91177308-0d34-0410-b5e6-96231b3b80d8
Add missing checks for `templateParams:` in `MDCompositeType`. Pull the
current check for `MDSubprogram` to reduce duplicated code and fix it up
to print a good message when the immediate operand isn't an `MDTuple`
(as a drive-by, make the same fix to `variables:` in `MDSubprogram`).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234177 91177308-0d34-0410-b5e6-96231b3b80d8
H.J. Lu noted that all .section options are separated by a comma.
This patch changes the syntax of unique to require one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234174 91177308-0d34-0410-b5e6-96231b3b80d8
Before when deciding if we needed a relocation in A-B, we wore only checking
if A was weak.
This fixes the asymmetry.
The "InSet" argument should probably be renamed to "ForValue", since InSet is
very MachO specific, but doing so in this patch would make it hard to read.
This fixes PR22815.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234165 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the compiler/assembly programmer to switch back to a
section. This in turn fixes the bootstrap failure on powerpc (tested
on gcc110) without changing the ppc codegen at all.
I will try to cleanup the various getELFSection overloads in a followup patch.
Just using a default argument now would lead to ambiguities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234099 91177308-0d34-0410-b5e6-96231b3b80d8
Scalar integers are commuted to move constants to the RHS for re-association - this ensures vectors do the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234092 91177308-0d34-0410-b5e6-96231b3b80d8
Previously the patterns didn't have high enough priority and we would only use the GR32 form if the only the upper 32 or 56 bits were zero.
Fixes PR23100.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234075 91177308-0d34-0410-b5e6-96231b3b80d8