Split the pattern parsing code out from the dag isel emitter into it's own file.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45632 91177308-0d34-0410-b5e6-96231b3b80d8
the one that takes an operand list instead of explicit
operands. There is one left though, the more interesting
one :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43290 91177308-0d34-0410-b5e6-96231b3b80d8
take a deleted nodes vector, instead of requiring it.
One more significant change: Implement the start of a legalizer that
just works on types. This legalizer is designed to run before the
operation legalizer and ensure just that the input dag is transformed
into an output dag whose operand and result types are all legal, even
if the operations on those types are not.
This design/impl has the following advantages:
1. When finished, this will *significantly* reduce the amount of code in
LegalizeDAG.cpp. It will remove all the code related to promotion and
expansion as well as splitting and scalarizing vectors.
2. The new code is very simple, idiomatic, and modular: unlike
LegalizeDAG.cpp, it has no 3000 line long functions. :)
3. The implementation is completely iterative instead of recursive, good
for hacking on large dags without blowing out your stack.
4. The implementation updates nodes in place when possible instead of
deallocating and reallocating the entire graph that points to some
mutated node.
5. The code nicely separates out handling of operations with invalid
results from operations with invalid operands, making some cases
simpler and easier to understand.
6. The new -debug-only=legalize-types option is very very handy :),
allowing you to easily understand what legalize types is doing.
This is not yet done. Until the ifdef added to SelectionDAGISel.cpp is
enabled, this does nothing. However, this code is sufficient to legalize
all of the code in 186.crafty, olden and freebench on an x86 machine. The
biggest issues are:
1. Vectors aren't implemented at all yet
2. SoftFP is a mess, I need to talk to Evan about it.
3. No lowering to libcalls is implemented yet.
4. Various operations are missing etc.
5. There are FIXME's for stuff I hax0r'd out, like softfp.
Hey, at least it is a step in the right direction :). If you'd like to help,
just enable the #ifdef in SelectionDAGISel.cpp and compile code with it. If
this explodes it will tell you what needs to be implemented. Help is
certainly appreciated.
Once this goes in, we can do three things:
1. Add a new pass of dag combine between the "type legalizer" and "operation
legalizer" passes. This will let us catch some long-standing isel issues
that we miss because operation legalization often obfuscates the dag with
target-specific nodes.
2. We can rip out all of the type legalization code from LegalizeDAG.cpp,
making it much smaller and simpler. When that happens we can then
reimplement the core functionality left in it in a much more efficient and
non-recursive way.
3. Once the whole legalizer is non-recursive, we can implement whole-function
selectiondags maybe...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42981 91177308-0d34-0410-b5e6-96231b3b80d8
1.
[(set GR32:$dst, (add GR32:$src1, GR32:$src2)),
(modify EFLAGS)]
This indicates the source pattern expects the instruction would produce 2 values. The first is the result of the addition. The second is an implicit definition in register EFLAGS.
2.
def : Pat<(parallel (addc GR32:$src1, GR32:$src2), (modify EFLAGS)), ()>
Similar to #1 except this is used for def : Pat patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41897 91177308-0d34-0410-b5e6-96231b3b80d8
that there were two input operands before the variable operand portion. This
*happened* to be true for all call instructions, which took a chain and a
destination, but was not true for the PPC BCTRL instruction, whose destination
is implicit.
Making this code more general allows elimination of the custom selection logic
for BCTRL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31732 91177308-0d34-0410-b5e6-96231b3b80d8
X86ISD::CMP, etc.) instead of SDNode names (add, x86cmp, etc). We now allow
multiple SDNodes to map to the same SelectionDAG node (e.g. store, indexed
store).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31575 91177308-0d34-0410-b5e6-96231b3b80d8
way to reach the load via any nodes that would be folded. Start from the
root of the matched sub-tree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30956 91177308-0d34-0410-b5e6-96231b3b80d8
chain operand to point to the load being folded. Now we relax this, traversing
up the chain, if it doesn't reach the load, then it's ok. We will create a
TokenFactor (of all the chain operands and the load's chain) to capture all
the control flow dependencies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30897 91177308-0d34-0410-b5e6-96231b3b80d8
The dag/inst combiners often 'simplify' the masked value based on whether
or not the bits are live or known zero/one. This is good and dandy, but
often causes special case patterns to fail, such as alpha's CMPBGE pattern,
which looks like "(set GPRC:$RC, (setuge (and GPRC:$RA, 255), (and GPRC:$RB, 255)))".
Here the pattern for (and X, 255) should match actual dags like (and X, 254) if
the dag combiner proved that the missing bits are already zero (one for 'or').
For CodeGen/Alpha/cmpbge.ll:test2 for example, this results in:
sll $16,1,$0
cmpbge $0,$17,$0
ret $31,($26),1
instead of:
sll $16,1,$0
and $0,254,$0
and $17,255,$1
cmpule $1,$0,$0
ret $31,($26),1
... and requires no target-specific code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30871 91177308-0d34-0410-b5e6-96231b3b80d8
the branch's chain is also produced by cmp.
[ch, r : ld]
^ ^
| |
[XX]--/ \- [flag : cmp]
^ ^
| |
\---[br flag]-
Remove an isel check which prevents loads from being folded into cmp / test
instructions.
2) Whenever possible, delete a selected node to allow more load folding
opportunities. Note not all nodes can be deleted after it has been
selected. Some may have simply morphed; some have not changed at all (e.g.
EntryToken).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30242 91177308-0d34-0410-b5e6-96231b3b80d8
- Clean up the code generated by tablegen:
* AddToISelQueue now takes one argument.
* ComplexPattern matching condition can now be shared.
* Eliminate passing unnecessary arguments to emit routines.
* Eliminate some unneeded SDOperand declarations in select routines.
* Other minor clean ups.
- This reduces foot print slightly: X86ISelDAGToDAG.o is reduced from 971k
to 823k.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29892 91177308-0d34-0410-b5e6-96231b3b80d8
introduced by previous commit.
- SelectCode now returns a SDNode*. If it is not null, the selected node
produces the same number of results as the input node. The seletion loop
is responsible for calling ReplaceAllUsesWith() to replace the input node
with the output target node. For other cases, e.g. when load is folded,
the selection code is responsible for calling ReplaceAllUsesOfValueWith()
and SelectCode returns NULL.
- Other clean ups.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29602 91177308-0d34-0410-b5e6-96231b3b80d8
in the start of an array and a count of operands where applicable. In many
cases, the number of operands is known, so this static array can be allocated
on the stack, avoiding the heap. In many other cases, a SmallVector can be
used, which has the same benefit in the common cases.
I updated a lot of code calling getNode that takes a vector, but ran out of
time. The rest of the code should be updated, and these methods should be
removed.
We should also do the same thing to eliminate the methods that take a
vector of MVT::ValueTypes.
It would be extra nice to convert the dagiselemitter to avoid creating vectors
for operands when calling getTargetNode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29566 91177308-0d34-0410-b5e6-96231b3b80d8
per possible ValueType of the node. e.g. Select_add is split into Select_add_i8,
Select_add_i16, etc.
For opcodes which do not produce a non-chain result, it is split on the
ValueType of its first non-chain operand. e.g. Select_store.
On X86 / Mac OS X, Select_store used to be the largest function. It had a stack
frame size of 8.5k. Now the largest one is Store_i32 with a frame size of 3.1k.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29404 91177308-0d34-0410-b5e6-96231b3b80d8
code that emit target specific nodes into emit functions that are uniquified
and shared among selection routines.
e.g. This reduces X86ISelDAGToDAG.o (release) from ~2M to ~1.5M. Stack frame
size of Select_store from ~13k down to ~8k.
This is the first step. Further work to enable more sharing will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29158 91177308-0d34-0410-b5e6-96231b3b80d8
RemoveInFlightSetEntry. They are used in place of direct set operators to
reduce instruction selection function stack size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28987 91177308-0d34-0410-b5e6-96231b3b80d8