on X86 Atom. Some of our tests failed because the tail merging part of
the BranchFolding pass was creating new basic blocks which did not
contain live-in information. When the anti-dependency code in the Post-RA
scheduler ran, it would sometimes rename the register containing
the function return value because the fact that the return value was
live-in to the subsequent block had been lost. To fix this, it is necessary
to run the RegisterScavenging code in the BranchFolding pass.
This patch makes sure that the register scavenging code is invoked
in the X86 subtarget only when post-RA scheduling is being done.
Post RA scheduling in the X86 subtarget is only done for Atom.
This patch adds a new function to the TargetRegisterClass to control
whether or not live-ins should be preserved during branch folding.
This is necessary in order for the anti-dependency optimizations done
during the PostRASchedulerList pass to work properly when doing
Post-RA scheduling for the X86 in general and for the Intel Atom in particular.
The patch adds and invokes the new function trackLivenessAfterRegAlloc()
instead of using the existing requiresRegisterScavenging().
It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of
requiresRegisterScavenging(). It changes the all the targets that
implemented requiresRegisterScavenging() to also implement
trackLivenessAfterRegAlloc().
It adds an assertion in the Post RA scheduler to make sure that post RA
liveness information is available when it is needed.
It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order
to avoid running into the added assertion.
Finally, this patch restores the use of anti-dependency checking
(which was turned off temporarily for the 3.1 release) for
Intel Atom in the Post RA scheduler.
Patch by Andy Zhang!
Thanks to Jakob and Anton for their reviews.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155395 91177308-0d34-0410-b5e6-96231b3b80d8
When building LLVM on Linux with libc++ with CMake TIME_WITH_SYS_TIME is
undefined, and HAVE_SYS_TIME_H is defined. This ends up including
sys/time.h but not time.h. Unix/TimeValue.inc requires time.h for asctime_r
and localtime. libstdc++ seems to include time.h anyway, but libc++ does
not.
Fix this by always including time.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155382 91177308-0d34-0410-b5e6-96231b3b80d8
test suite failures. The failures occur at each stage, and only get
worse, so I'm reverting all of them.
Please resubmit these patches, one at a time, after verifying that the
regression test suite passes. Never submit a patch without running the
regression test suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155372 91177308-0d34-0410-b5e6-96231b3b80d8
Original commit message:
Defer some shl transforms to DAGCombine.
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155362 91177308-0d34-0410-b5e6-96231b3b80d8
The problem is that the struct file_status on UNIX systems has two
members called st_dev and st_ino; those are also members of the
struct stat, and they are reserved identifiers which can also be
provided as #define (and this is the case for st_dev on Hurd).
The solution (attached) is to rename them, for example adding a
"fs_" prefix (= file status) to them.
Patch by Pino Toscano
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155354 91177308-0d34-0410-b5e6-96231b3b80d8
intructions are processed. So there's no need to look at them if they're used as
operands of other instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155327 91177308-0d34-0410-b5e6-96231b3b80d8
The X86 target is editing the selection DAG while isel is selecting
nodes following a topological ordering. When the DAG hacking triggers
CSE, nodes can be deleted and bad things happen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155257 91177308-0d34-0410-b5e6-96231b3b80d8
Now that multiple DAGUpdateListeners can be active at the same time,
ISelPosition can become a local variable in DoInstructionSelection.
We simply register an ISelUpdater with CurDAG while ISelPosition exists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155249 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of passing listener pointers to RAUW, let SelectionDAG itself
keep a linked list of interested listeners.
This makes it possible to have multiple listeners active at once, like
RAUWUpdateListener was already doing. It also makes it possible to
register listeners up the call stack without controlling all RAUW calls
below.
DAGUpdateListener uses an RAII pattern to add itself to the SelectionDAG
list of active listeners.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155248 91177308-0d34-0410-b5e6-96231b3b80d8
The <undef> flag on a def operand only applies to partial register
redefinitions. Only print the flag when relevant, and print it as
<def,read-undef> to make it clearer what it means.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155239 91177308-0d34-0410-b5e6-96231b3b80d8
This nicely handles the most common case of virtual register sets, but
also handles anticipated cases where we will map pointers to IDs.
The goal is not to develop a completely generic SparseSet
template. Instead we want to handle the expected uses within llvm
without any template antics in the client code. I'm adding a bit of
template nastiness here, and some assumption about expected usage in
order to make the client code very clean.
The expected common uses cases I'm designing for:
- integer keys that need to be reindexed, and may map to additional
data
- densely numbered objects where we want pointer keys because no
number->object map exists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155227 91177308-0d34-0410-b5e6-96231b3b80d8
Use the new TwoOperandAliasConstraint to handle lots of the two-operand aliases
for NEON instructions. There's still more to go, but this is a good chunk of
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155210 91177308-0d34-0410-b5e6-96231b3b80d8
(load only has one operand) and smuggle in some whitespace changes too
NB: I am obviously testing the water here, and believe that the unguarded
cast is still wrong, but why is the getZExtValue of the load's operand
tested against zero here? Any review is appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155190 91177308-0d34-0410-b5e6-96231b3b80d8
While the patch was perfect and defect free, it exposed a really nasty
bug in X86 SelectionDAG that caused an llc crash when compiling lencod.
I'll put the patch back in after fixing the SelectionDAG problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155181 91177308-0d34-0410-b5e6-96231b3b80d8
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155136 91177308-0d34-0410-b5e6-96231b3b80d8
symbolicated. These have and operand type of TYPE_RELv which was not handled
as isBranch in translateImmediate() in X86Disassembler.cpp. rdar://11268426
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155074 91177308-0d34-0410-b5e6-96231b3b80d8
commits have had several major issues pointed out in review, and those
issues are not being addressed in a timely fashion. Furthermore, this
was all committed leading up to the v3.1 branch, and we don't need piles
of code with outstanding issues in the branch.
It is possible that not all of these commits were necessary to revert to
get us back to a green state, but I'm going to let the Hexagon
maintainer sort that out. They can recommit, in order, after addressing
the feedback.
Reverted commits, with some notes:
Primary commit r154616: HexagonPacketizer
- There are lots of review comments here. This is the primary reason
for reverting. In particular, it introduced large amount of warnings
due to a bad construct in tablegen.
- Follow-up commits that should be folded back into this when
reposting:
- r154622: CMake fixes
- r154660: Fix numerous build warnings in release builds.
- Please don't resubmit this until the three commits above are
included, and the issues in review addressed.
Primary commit r154695: Pass to replace transfer/copy ...
- Reverted to minimize merge conflicts. I'm not aware of specific
issues with this patch.
Primary commit r154703: New Value Jump.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154703: Remove iostream usage
- r154758: Fix CMake builds
- r154759: Fix build warnings in release builds
- Please incorporate these fixes and and review feedback before
resubmitting.
Primary commit r154829: Hexagon V5 (floating point) support.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154841: Remove unused variable (fixing build warnings)
There are also accompanying Clang commits that will be reverted for
consistency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155047 91177308-0d34-0410-b5e6-96231b3b80d8
DenseMap's hash function uses slightly more entropy and reduces hash collisions
significantly. I also experimented with Hashing.h, but it didn't gave a lot of
improvement while being much more expensive to compute.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154996 91177308-0d34-0410-b5e6-96231b3b80d8
If the loop contains invoke instructions, whose unwind edge escapes the loop,
then don't try to unswitch the loop. Doing so may cause the unwind edge to be
split, which not only is non-trivial but doesn't preserve loop simplify
information.
Fixes PR12573
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154987 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces a threshold of 200 IV Users, which is very
conservative but should be sufficient to avoid serious compile time
sink or stack overflow. The llvm test-suite with LTO never exceeds 190
users per loop.
The bug doesn't relate to a specific type of loop. Checking in an
arbitrary giant loop as a unit test would be silly.
Fixes rdar://11262507.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154983 91177308-0d34-0410-b5e6-96231b3b80d8
also fix SimplifyLibCalls to use TLI rather than compile-time conditionals to enable optimizations on floor, ceil, round, rint, and nearbyint
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154960 91177308-0d34-0410-b5e6-96231b3b80d8
transformation:
(X op C1) ^ C2 --> (X op C1) & ~C2 iff (C1&C2) == C2
should be done.
This change has been tested:
Using a debug+asserts build:
on the specific test case that brought this bug to light
make check-all
lnt nt
using this clang to build a release version of clang
Using the release+asserts clang-with-clang build:
on the specific test case that brought this bug to light
make check-all
lnt nt
Checking in because Evan wants it checked in. Test case forthcoming after
scrubbing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154955 91177308-0d34-0410-b5e6-96231b3b80d8