try to reduce the width of this load, and would end up transforming:
(truncate (lshr (sextload i48 <ptr> as i64), 32) to i32)
to
(truncate (zextload i32 <ptr+4> as i64) to i32)
We lost the sext attached to the load while building the narrower i32
load, and replaced it with a zext because lshr always zext's the
results. Instead, bail out of this combine when there is a conflict
between a sextload and a zext narrowing. The rest of the DAG combiner
still optimize the code down to the proper single instruction:
movswl 6(...),%eax
Which is exactly what we wanted. Previously we read past the end *and*
missed the sign extension:
movl 6(...), %eax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169802 91177308-0d34-0410-b5e6-96231b3b80d8
check if loads that happen in between stores alias with the first store in the
chain, only with the second store onwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169516 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
checks to avoid performing compile-time arithmetic on PPCDoubleDouble.
Now that APFloat supports arithmetic on PPCDoubleDouble, those checks
are no longer needed, and we can treat the type like any other.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166958 91177308-0d34-0410-b5e6-96231b3b80d8
- If more than 1 elemennts are defined and target supports the vectorized
conversion, use the vectorized one instead to reduce the strength on
conversion operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166546 91177308-0d34-0410-b5e6-96231b3b80d8
- Folding (trunc (concat ... X )) to (concat ... (trunc X) ...) is valid
when '...' are all 'undef's.
- r166125 relies on this transformation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166155 91177308-0d34-0410-b5e6-96231b3b80d8
- If the extracted vector has the same type of all vectored being concatenated
together, it should be simplified directly into v_i, where i is the index of
the element being extracted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166125 91177308-0d34-0410-b5e6-96231b3b80d8
This class is used by LSR and a number of places in the codegen.
This is the first step in de-coupling LSR from TLI, and creating
a new interface in between them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165455 91177308-0d34-0410-b5e6-96231b3b80d8
multiple stores with a single load. We create the wide loads and stores (and their chains)
before we remove the scalar loads and stores and fix the DAG chain. We attempted to merge
loads with a different chain. When that happened, the assumption that it is safe to RAUW
broke and a cycle was introduced.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165148 91177308-0d34-0410-b5e6-96231b3b80d8
is not profitable in many cases because modern processors perform multiple stores
in parallel and merging stores prior to merging requires extra work. We handle two main cases:
1. Store of multiple consecutive constants:
q->a = 3;
q->4 = 5;
In this case we store a single legal wide integer.
2. Store of multiple consecutive loads:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
In this case we load/store either ilegal vector registers or legal wide integer registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165125 91177308-0d34-0410-b5e6-96231b3b80d8
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164910 91177308-0d34-0410-b5e6-96231b3b80d8
buildbots. Original commit message:
A DAGCombine optimization for merging consecutive stores. This optimization is not profitable in many cases
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164890 91177308-0d34-0410-b5e6-96231b3b80d8
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164885 91177308-0d34-0410-b5e6-96231b3b80d8
by xoring the high-bit. This fails if the source operand is a vector because we need to negate
each of the elements in the vector.
Fix rdar://12281066 PR13813.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163802 91177308-0d34-0410-b5e6-96231b3b80d8
The DAGCombiner tries to optimise a BUILD_VECTOR by checking if it
consists purely of get_vector_elts from one or two source vectors. If
so, it either makes a concat_vectors node or a shufflevector node.
However, it doesn't check the element type width of the underlying
vector, so if you have this sequence:
Node0: v4i16 = ...
Node1: i32 = extract_vector_elt Node0
Node2: i32 = extract_vector_elt Node0
Node3: v16i8 = BUILD_VECTOR Node1, Node2, ...
It will attempt to:
Node0: v4i16 = ...
NewNode1: v16i8 = concat_vectors Node0, ...
Where this is actually invalid because the element width is completely
different. This causes an assertion failure on DAG legalization stage.
Fix:
If output item type of BUILD_VECTOR differs from input item type.
Make concat_vectors based on input element type and then bitcast it to the output vector type. So the case described above will transformed to:
Node0: v4i16 = ...
NewNode1: v8i16 = concat_vectors Node0, ...
NewNode2: v16i8 = bitcast NewNode1
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162195 91177308-0d34-0410-b5e6-96231b3b80d8