to perform the copy, which may be of lots of memory [*]. It would be good if the
fall-back code generated something reasonable, i.e. did the copy in a loop, rather
than vast numbers of loads and stores. Add a note about this. Currently target
specific code seems to always kick in so this is more of a theoretical issue rather
than a practical one now that X86 has been fixed.
[*] It's amazing how often people pass mega-byte long arrays by copy...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118275 91177308-0d34-0410-b5e6-96231b3b80d8
with a SimpleValueType, while an EVT supports equality and
inequality comparisons with SimpleValueType.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118169 91177308-0d34-0410-b5e6-96231b3b80d8
value type, so there is no point in passing it around using
an EVT. Use the simpler MVT everywhere. Rather than trying
to propagate this information maximally in all the code that
using the calling convention stuff, I chose to do a mainly
low impact change instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118167 91177308-0d34-0410-b5e6-96231b3b80d8
1. Fix pre-ra scheduler so it doesn't try to push instructions above calls to
"optimize for latency". Call instructions don't have the right latency and
this is more likely to use introduce spills.
2. Fix if-converter cost function. For ARM, it should use instruction latencies,
not # of micro-ops since multi-latency instructions is completely executed
even when the predicate is false. Also, some instruction will be "slower"
when they are predicated due to the register def becoming implicit input.
rdar://8598427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118135 91177308-0d34-0410-b5e6-96231b3b80d8
operand and one of them has a single use that is a live out copy, favor the
one that is live out. Otherwise it will be difficult to eliminate the copy
if the instruction is a loop induction variable update. e.g.
BB:
sub r1, r3, #1
str r0, [r2, r3]
mov r3, r1
cmp
bne BB
=>
BB:
str r0, [r2, r3]
sub r3, r3, #1
cmp
bne BB
This fixed the recent 256.bzip2 regression.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117675 91177308-0d34-0410-b5e6-96231b3b80d8
memory, so a MachineMemOperand is useful (not propagated
into the MachineInstr yet). No functional change except
for dump output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117413 91177308-0d34-0410-b5e6-96231b3b80d8
setup they require. Use this for ARM/Darwin to rematerialize the base
pointer from the frame pointer when required. rdar://8564268
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116879 91177308-0d34-0410-b5e6-96231b3b80d8
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
allow target to correctly compute latency for cases where static scheduling
itineraries isn't sufficient. e.g. variable_ops instructions such as
ARM::ldm.
This also allows target without scheduling itineraries to compute operand
latencies. e.g. X86 can return (approximated) latencies for high latency
instructions such as division.
- Compute operand latencies for those defined by load multiple instructions,
e.g. ldm and those used by store multiple instructions, e.g. stm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115755 91177308-0d34-0410-b5e6-96231b3b80d8
having to do a double cast (uint64_t --> double --> float). This is based on the algorithm from compiler_rt's __floatundisf
for X86-64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115634 91177308-0d34-0410-b5e6-96231b3b80d8
// %a = ...
// %b = and i32 %a, 2
// %c = srl i32 %b, 1
// brcond i32 %c ...
//
// into
//
// %a = ...
// %b = and i32 %a, 2
// %c = setcc eq %b, 0
// brcond %c ...
Make sure it restores local variable N1, which corresponds to the condition operand if it fails to match.
This apparently breaks TCE but since that backend isn't in the tree I don't have a test for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115571 91177308-0d34-0410-b5e6-96231b3b80d8
The x86_mmx type is used for MMX intrinsics, parameters and
return values where these use MMX registers, and is also
supported in load, store, and bitcast.
Only the above operations generate MMX instructions, and optimizations
do not operate on or produce MMX intrinsics.
MMX-sized vectors <2 x i32> etc. are lowered to XMM or split into
smaller pieces. Optimizations may occur on these forms and the
result casted back to x86_mmx, provided the result feeds into a
previous existing x86_mmx operation.
The point of all this is prevent optimizations from introducing
MMX operations, which is unsafe due to the EMMS problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115243 91177308-0d34-0410-b5e6-96231b3b80d8
edited during emission.
If the basic block ends in a switch that gets lowered to a jump table, any
phis at the default edge were getting updated wrong. The jump table data
structure keeps a pointer to the header blocks that wasn't getting updated
after the MBB is split.
This bug was exposed on 32-bit Linux when disabling critical edge splitting in
codegen prepare.
The fix is to uipdate stale MBB pointers whenever a block is split during
emission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115191 91177308-0d34-0410-b5e6-96231b3b80d8