be the first encoded as the first feature. It then uses the CPU name to look up
features / scheduling itineray even though clients know full well the CPU name
being used to query these properties.
The fix is to just have the clients explictly pass the CPU name!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134127 91177308-0d34-0410-b5e6-96231b3b80d8
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134021 91177308-0d34-0410-b5e6-96231b3b80d8
target machine from those that are only needed by codegen. The goal is to
sink the essential target description into MC layer so we can start building
MC based tools without needing to link in the entire codegen.
First step is to refactor TargetRegisterInfo. This patch added a base class
MCRegisterInfo which TargetRegisterInfo is derived from. Changed TableGen to
separate register description from the rest of the stuff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133782 91177308-0d34-0410-b5e6-96231b3b80d8
If the linker supports it, this will hold the CIE and FDE information in a
compact format. The implementation of the compact unwinding emission is coming
soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133658 91177308-0d34-0410-b5e6-96231b3b80d8
A RegisterTuples instance is used to synthesize super-registers by
zipping together lists of sub-registers. This is useful for generating
pseudo-registers representing register sequence constraints like 'two
consecutive GPRs', or 'an even-odd pair of floating point registers'.
The RegisterTuples def can be used in register set operations when
building register classes. That is the only way of accessing the
synthesized super-registers.
For example, the ARM QQ register class of pseudo-registers could have
been formed like this:
// Form pairs Q0_Q1, Q2_Q3, ...
def QQPairs : RegisterTuples<[qsub_0, qsub_1],
[(decimate QPR, 2),
(decimate (shl QPR, 1), 2)]>;
def QQ : RegisterClass<..., (add QQPairs)>;
Similarly, pseudo-registers representing '3 consecutive D-regs with
wraparound' look like:
// Form D0_D1_D2, D1_D2_D3, ..., D30_D31_D0, D31_D0_D1.
def DSeqTriples : RegisterTuples<[dsub_0, dsub_1, dsub_2],
[(rotl DPR, 0),
(rotl DPR, 1),
(rotl DPR, 2)]>;
TableGen automatically computes aliasing information for the synthesized
registers.
Register tuples are still somewhat experimental. We still need to see
how they interact with MC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133407 91177308-0d34-0410-b5e6-96231b3b80d8
Targets that need to change the default allocation order should use the
AltOrders mechanism instead. See the X86 and ARM targets for examples.
The allocation_order_begin() and allocation_order_end() methods have been
replaced with getRawAllocationOrder(), and there is further support
functions in RegisterClassInfo.
It is no longer possible to insert arbitrary code into generated
register classes. This is a feature.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133332 91177308-0d34-0410-b5e6-96231b3b80d8
A register class can define AltOrders and AltOrderSelect instead of
defining method protos and bodies. The AltOrders lists can be defined
with set operations, and TableGen can verify that the alternative
allocation orders only contain valid registers.
This is currently an opt-in feature, and it is still possible to
override allocation_order_begin/end. That will not be true for long.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133320 91177308-0d34-0410-b5e6-96231b3b80d8
The LSDA is a bit difficult for the non-initiated to read. Even with comments,
it's not always clear what's going on. This wraps the ASM streamer in a class
that retains the LSDA and then emits a human-readable description of what's
going on in it.
So instead of having to make sense of:
Lexception1:
.byte 255
.byte 155
.byte 168
.space 1
.byte 3
.byte 26
Lset0 = Ltmp7-Leh_func_begin1
.long Lset0
Lset1 = Ltmp812-Ltmp7
.long Lset1
Lset2 = Ltmp913-Leh_func_begin1
.long Lset2
.byte 3
Lset3 = Ltmp812-Leh_func_begin1
.long Lset3
Lset4 = Leh_func_end1-Ltmp812
.long Lset4
.long 0
.byte 0
.byte 1
.byte 0
.byte 2
.byte 125
.long __ZTIi@GOTPCREL+4
.long __ZTIPKc@GOTPCREL+4
you can read this instead:
## Exception Handling Table: Lexception1
## @LPStart Encoding: omit
## @TType Encoding: indirect pcrel sdata4
## @TType Base: 40 bytes
## @CallSite Encoding: udata4
## @Action Table Size: 26 bytes
## Action 1:
## A throw between Ltmp7 and Ltmp812 jumps to Ltmp913 on an exception.
## For type(s): __ZTIi@GOTPCREL+4 __ZTIPKc@GOTPCREL+4
## Action 2:
## A throw between Ltmp812 and Leh_func_end1 does not have a landing pad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133286 91177308-0d34-0410-b5e6-96231b3b80d8
Also switch the return type to ArrayRef<unsigned> which works out nicely
for ARM's implementation of this function because of the clever ArrayRef
constructors.
The name change indicates that the returned allocation order may contain
reserved registers as has been the case for a while.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133216 91177308-0d34-0410-b5e6-96231b3b80d8
This is intended to support using REG_SEQUENCE SDNode's with type MVT::untyped, and is part of the long road to eliminating some of the hacks we currently use to support register pairs and other strange constraints, particularly on ARM NEON.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133178 91177308-0d34-0410-b5e6-96231b3b80d8
This virtual function will replace allocation_order_begin/end as the one
to override when implementing custom allocation orders. It is simpler to
have one function return an ArrayRef than having two virtual functions
computing different ends of the same array.
Use getRawAllocationOrder() in place of allocation_order_begin() where
it makes sense, but leave some clients that look like they really want
the filtered allocation orders from RegisterClassInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133170 91177308-0d34-0410-b5e6-96231b3b80d8
This simplifies many of the target description files since it is common
for register classes to be related or contain sequences of numbered
registers.
I have verified that this doesn't change the files generated by TableGen
for ARM and X86. It alters the allocation order of MBlaze GPR and Mips
FGR32 registers, but I believe the change is benign.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133105 91177308-0d34-0410-b5e6-96231b3b80d8
At the time I wrote this code (circa 2007), TargetRegisterInfo was using a std::set to perform these queries. Switching to the static hashtables was an obvious improvement, but in reality there's no reason to do anything other than scan.
With this change, total LLC time on a whole-program 403.gcc is reduced by approximately 1.5%, almost all of which comes from a 15% reduction in LiveVariables time. It also reduces the binary size of LLC by 86KB, thanks to eliminating a bunch of very large static tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133051 91177308-0d34-0410-b5e6-96231b3b80d8
Make the hash tables as small as possible while ensuring that all
lookups can be done in less than 8 probes.
Cut the aliases hash table in half by only storing a < b pairs - it
is a symmetric relation.
Use larger multipliers on the initial hash function to ensure that it
properly covers the whole table, and to resolve some clustering in the
very regular ARM register bank.
This reduces the size of most of these tables by 4x - 8x. For instance,
the ARM tables shrink from 48 KB to 8 KB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132888 91177308-0d34-0410-b5e6-96231b3b80d8
Besides moving structural computations to CodeGenRegisters.cpp, this
also well-defines the order of these lists:
- Sub-register lists come from a pre-order traversal of the graph
defined by the SubRegs lists in the .td files.
- Super-register lists are topologically ordered so no register comes
before any of its sub-registers. When the sub-register graph is not a
tree, independent super-registers appear in numerical order.
- Lists of overlapping registers are ordered according to register
number.
This reverses the order of the super-regs lists, but nobody was
depending on that. The previous order of the overlaps lists was odd, and
it may have depended on the precise behavior of std::stable_sort.
The old computations are still there, but will be removed shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132881 91177308-0d34-0410-b5e6-96231b3b80d8
Some register classes are only used for instruction operand constraints.
They should never be used for virtual registers. Previously, those
register classes were given an empty allocation order, but now you can
say 'let isAllocatable=0' in the register class definition.
TableGen calculates if a register is part of any allocatable register
class, and makes that information available in TargetRegisterDesc::inAllocatableClass.
The goal here is to eliminate use cases for overriding allocation_order_*
methods.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132508 91177308-0d34-0410-b5e6-96231b3b80d8
Add TargetRegisterInfo::hasSubClassEq and use it to check for compatible
register classes instead of trying to list all register classes in
X86's getLoadStoreRegOpcode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132398 91177308-0d34-0410-b5e6-96231b3b80d8
patch we add a flag to enable a new type legalization decision - to promote
integer elements in vectors. Currently, the rest of the codegen does not support
this kind of legalization. This flag will be removed when the transition is
complete.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132394 91177308-0d34-0410-b5e6-96231b3b80d8
same dwarf number. This will be used for creating a dwarf number to register
mapping.
The only case that needs this so far is the XMM/YMM registers that unfortunately
do have the same numbers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132314 91177308-0d34-0410-b5e6-96231b3b80d8
This patch does not change the behavior of the type legalizer. The codegen
produces the same code.
This infrastructural change is needed in order to enable complex decisions
for vector types (needed by the vector-select patch).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132263 91177308-0d34-0410-b5e6-96231b3b80d8
suffix (e.g. .xdata$myfunc). The suffix part isn't implemented yet, but
I'll get to it in the next patch.
Fix up all callers of the affected functions. Make them pass said suffix to
the function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132205 91177308-0d34-0410-b5e6-96231b3b80d8
LTO friendly as we can now correctly merge files compiled with or without
-fasynchronous-unwind-tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132033 91177308-0d34-0410-b5e6-96231b3b80d8
Add a size alignment check to the .seh_stackalloc directive parser. Add a
more descriptive error message to the .seh_handler directive parser.
Add methods to the TargetAsmInfo struct in support of all this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131992 91177308-0d34-0410-b5e6-96231b3b80d8
scheme uses internally. Implement it for x86 (the only architecture that LLVM
supports for which this matters right now).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131969 91177308-0d34-0410-b5e6-96231b3b80d8
Original log entry:
Refactor getActionType and getTypeToTransformTo ; place all of the 'decision'
code in one place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131536 91177308-0d34-0410-b5e6-96231b3b80d8
who used this flag, and it now emits CFI and doesn't emit this anymore. All
other targets left this flag "false".
<rdar://problem/8486371>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130918 91177308-0d34-0410-b5e6-96231b3b80d8
model constants which can be added to base registers via add-immediate
instructions which don't require an additional register to materialize
the immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130743 91177308-0d34-0410-b5e6-96231b3b80d8
give it a bit more responsibility. Also implement it for MachO.
If hacked to use cfi, 32 bit MachO will produce
.cfi_personality 155, L___gxx_personality_v0$non_lazy_ptr
and 64 bit will produce
.cfi_presonality ___gxx_personality_v0
The general idea is that .cfi_personality gets passed the final symbol. It is
up to codegen to produce it if using indirect representation (like 32 bit
MachO), but it is up to MC to decide which relocations to create.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130341 91177308-0d34-0410-b5e6-96231b3b80d8
The hook will be used by the register allocator when recomputing register
classes after removing constraints.
Thumb1 code doesn't allow anything larger than tGPR, and x86 needs to ensure
that the spill size doesn't change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130228 91177308-0d34-0410-b5e6-96231b3b80d8
These values were not used for anything. Spill size and alignment is a property
of the register class, not the register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129906 91177308-0d34-0410-b5e6-96231b3b80d8
On the x86-64 and thumb2 targets, some registers are more expensive to encode
than others in the same register class.
Add a CostPerUse field to the TableGen register description, and make it
available from TRI->getCostPerUse. This represents the cost of a REX prefix or a
32-bit instruction encoding required by choosing a high register.
Teach the greedy register allocator to prefer cheap registers for busy live
ranges (as indicated by spill weight).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129864 91177308-0d34-0410-b5e6-96231b3b80d8
Add a avoidWriteAfterWrite() target hook to identify register classes that
suffer from write-after-write hazards. For those register classes, try to avoid
writing the same register in two consecutive instructions.
This is currently disabled by default. We should not spill to avoid hazards!
The command line flag -avoid-waw-hazard can be used to enable waw avoidance.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129772 91177308-0d34-0410-b5e6-96231b3b80d8
the generated FastISel. X86 doesn't need to generate code to match ADD16ri8
since ADD16ri will do just fine. This is a small codesize win in the generated
instruction selector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129692 91177308-0d34-0410-b5e6-96231b3b80d8
kind of predicate: one that is specific to imm nodes. The predicate function
specified here just checks an int64_t directly instead of messing around with
SDNode's. The virtue of this is that it means that fastisel and other things
can reason about these predicates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129675 91177308-0d34-0410-b5e6-96231b3b80d8
structure and fix some fixmes. We now have a TreePredicateFn class
that handles all of the decoding of these things. This is an internal
cleanup that has no impact on the code generated by tblgen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129670 91177308-0d34-0410-b5e6-96231b3b80d8
Additional fixes:
Do something reasonable for subtargets with generic
itineraries by handle node latency the same as for an empty
itinerary. Now nodes default to unit latency unless an itinerary
explicitly specifies a zero cycle stage or it is a TokenFactor chain.
Original fixes:
UnitsSharePred was a source of randomness in the scheduler: node
priority depended on the queue data structure. I rewrote the recent
VRegCycle heuristics to completely replace the old heuristic without
any randomness. To make the ndoe latency adjustments work, I also
needed to do something a little more reasonable with TokenFactor. I
gave it zero latency to its consumers and always schedule it as low as
possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129421 91177308-0d34-0410-b5e6-96231b3b80d8
transformations in target-specific DAG combines without causing DAGCombiner to
delete the same node twice. If you know of a better way to avoid this (see my
next patch for an example), please let me know.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128758 91177308-0d34-0410-b5e6-96231b3b80d8
the alias of an InstAlias instead of the thing being aliased. Because we need to
know the features that are valid for an InstAlias.
This is part of a work-in-progress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127986 91177308-0d34-0410-b5e6-96231b3b80d8
to have single return block (at least getting there) for optimizations. This
is general goodness but it would prevent some tailcall optimizations.
One specific case is code like this:
int f1(void);
int f2(void);
int f3(void);
int f4(void);
int f5(void);
int f6(void);
int foo(int x) {
switch(x) {
case 1: return f1();
case 2: return f2();
case 3: return f3();
case 4: return f4();
case 5: return f5();
case 6: return f6();
}
}
=>
LBB0_2: ## %sw.bb
callq _f1
popq %rbp
ret
LBB0_3: ## %sw.bb1
callq _f2
popq %rbp
ret
LBB0_4: ## %sw.bb3
callq _f3
popq %rbp
ret
This patch teaches codegenprep to duplicate returns when the return value
is a phi and where the phi operands are produced by tail calls followed by
an unconditional branch:
sw.bb7: ; preds = %entry
%call8 = tail call i32 @f5() nounwind
br label %return
sw.bb9: ; preds = %entry
%call10 = tail call i32 @f6() nounwind
br label %return
return:
%retval.0 = phi i32 [ %call10, %sw.bb9 ], [ %call8, %sw.bb7 ], ... [ 0, %entry ]
ret i32 %retval.0
This allows codegen to generate better code like this:
LBB0_2: ## %sw.bb
jmp _f1 ## TAILCALL
LBB0_3: ## %sw.bb1
jmp _f2 ## TAILCALL
LBB0_4: ## %sw.bb3
jmp _f3 ## TAILCALL
rdar://9147433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127953 91177308-0d34-0410-b5e6-96231b3b80d8
Proof-of-concept code that code-gens a module to an in-memory MachO object.
This will be hooked up to a run-time dynamic linker library (see: llvm-rtdyld
for similarly conceptual work for that part) which will take the compiled
object and link it together with the rest of the system, providing back to the
JIT a table of available symbols which will be used to respond to the
getPointerTo*() queries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127916 91177308-0d34-0410-b5e6-96231b3b80d8