The notable fix is to look at any dependencies attached to the kill
instruction (or other instructions between MI nad the kill) where the
dependencies are specific to the register in question.
The old code implicitly handled this by rejecting the transform if *any*
other uses were found within the block, but after the start point. The
new code directly finds the kill, and has to re-use the existing
dependency scan to check for non-kill uses.
This was caught by self-host, but I found the bug via inspection and use
of absurd assert scaffolding to compute the kills in two ways and
compare them. So I have no useful testcase for this other than
"bootstrap". I'd work harder to reduce a test case if this particular
code were likely to live for a long time.
Thanks to Benjamin Kramer for reviewing the fix itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160228 91177308-0d34-0410-b5e6-96231b3b80d8
Catch uses of undefined physregs that haven't been added to basic block
live-in lists. Run the verifier to pinpoint the problem.
Also run the verifier when a virtual register use is not jointly
dominated by defs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160207 91177308-0d34-0410-b5e6-96231b3b80d8
All SCEV expressions used by LSR formulae must be safe to
expand. i.e. they may not contain UDiv unless we can prove nonzero
denominator.
Fixes PR11356: LSR hoists UDiv.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160205 91177308-0d34-0410-b5e6-96231b3b80d8
This allows SCEVExpander to run on the IV expressions.
This codifies an assumption made by LSR to complete the fix for
PR11356, but I haven't been able to generate a separate unit test for
this part. I'm adding it as an extra safety check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160204 91177308-0d34-0410-b5e6-96231b3b80d8
intrinsics with target-indepdent intrinsics. The first instruction(s) to be
handled are the vector versions of count leading zeros (ctlz).
The changes here are to clang so that it generates a target independent
vector ctlz when it sees an ARM dependent vector ctlz. The changes in llvm
are to match the target independent vector ctlz and in VMCore/AutoUpgrade.cpp
to update any existing bc files containing ARM dependent vector ctlzs with
target-independent ctlzs. There are also changes to an existing test case in
llvm for ARM vector count instructions and a new test for the bitcode upgrade.
<rdar://problem/11831778>
There is deliberately no test for the change to clang, as so far as I know, no
consensus has been reached regarding how to test neon instructions in clang;
q.v. <rdar://problem/8762292>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160200 91177308-0d34-0410-b5e6-96231b3b80d8
removes the largest scaling problem in the test cases from PR13225 when
ASan is switched to insert basic blocks in the natural CFG order.
It may also solve some scaling problems for more normal code with large
numbers of basic blocks and variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160194 91177308-0d34-0410-b5e6-96231b3b80d8
Call instructions are no longer required to be variadic, and
variable_ops should only be used for instructions that encode a variable
number of arguments, like the ARM stm/ldm instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160189 91177308-0d34-0410-b5e6-96231b3b80d8
Function argument registers are added to the call SDNode, but
InstrEmitter now knows how to make those operands implicit, and the call
instruction doesn't have to be variadic.
Explicit register operands should only be those that are encoded in the
instruction, implicit register operands are for extra dependencies like
call argument and return values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160188 91177308-0d34-0410-b5e6-96231b3b80d8
is used in cases where global symbols are
directly represented in the GOT and we use an
offset into the global offset table.
This patch adds direct object support for R_MIPS_GOT_DISP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160183 91177308-0d34-0410-b5e6-96231b3b80d8
When dumping the DAG for a fatal 'Cannot select' back-end error, also
provide the name of the function the construct is in. Useful when dealing
with large testcases, as the next step is to llvm-extract the function
in question to get a small(er) testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160152 91177308-0d34-0410-b5e6-96231b3b80d8
the input vector, it can be bigger (this is helpful for powerpc where <2 x i16>
is a legal vector type but i16 isn't a legal type, IIRC). However this wasn't
being taken into account by ExpandRes_EXTRACT_VECTOR_ELT, causing PR13220.
Lightly tweaked version of a patch by Michael Liao.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160116 91177308-0d34-0410-b5e6-96231b3b80d8
%shr = lshr i64 %key, 3
%0 = load i64* %val, align 8
%sub = add i64 %0, -1
%and = and i64 %sub, %shr
ret i64 %and
to:
%shr = lshr i64 %key, 3
%0 = load i64* %val, align 8
%sub = add i64 %0, 2305843009213693951
%and = and i64 %sub, %shr
ret i64 %and
The demanded bit optimization is actually a pessimization because add -1 would
be codegen'ed as a sub 1. Teach the demanded constant shrinking optimization
to check for negated constant to make sure it is actually reducing the width
of the constant.
rdar://11793464
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160101 91177308-0d34-0410-b5e6-96231b3b80d8
def Pat<...>;
Results in 'record name is not a string!' diagnostic. Not the best,
but the lack of location information moves it from not very helpful
into completely useless. We're in the Record class when throwing the
error, so just add the location info directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160098 91177308-0d34-0410-b5e6-96231b3b80d8
It is safe if CPSR is killed or re-defined.
When we are done with the basic block, check whether CPSR is live-out.
Do not optimize away cmp if CPSR is live-out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160090 91177308-0d34-0410-b5e6-96231b3b80d8
When WriteFragmentData() case FT_align called
Asm.getBackend().writeNopData() is called, nothing
is done since Mips implementation of writeNopData just
returned "true".
For some reason this has not caused problems in 32 bit
mode, but in 64 bit mode it caused an assert when processing
multiple function units.
The test case included will assert without this patch. It
runs twice with different flags to prevent false positives
due to changes in code generation over time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160084 91177308-0d34-0410-b5e6-96231b3b80d8
Even though variable in question could not
be initialized before use, the code was such that
the compiler had no way of knowing that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160081 91177308-0d34-0410-b5e6-96231b3b80d8
file buffer is null-terminated.
If the file is smaller than we thought, mmap will not allow dereferencing
past the pages that are enough to cover the actual file size,
even though we asked for a larger address range.
rdar://11612916
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160075 91177308-0d34-0410-b5e6-96231b3b80d8
r1025 = s/zext r1024, 4
r1026 = extract_subreg r1025, 4
to a copy:
r1026 = copy r1024
This is correct. However it uses TII->isCoalescableExtInstr() which can return
true for instructions which essentially does a sext_in_reg so this can end up
with an illegal copy where the source and destination register classes do not
match. Add a check to avoid it. Sorry, no test case possible at this time.
rdar://11849816
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160059 91177308-0d34-0410-b5e6-96231b3b80d8
Low order register of a double word register operand. Operands
are defined by the name of the variable they are marked with in
the inline assembler code. This is a way to specify that the
operand just refers to the low order register for that variable.
It is the opposite of modifier 'D' which specifies the high order
register.
Example:
main()
{
long long ll_input = 0x1111222233334444LL;
long long ll_val = 3;
int i_result = 0;
__asm__ __volatile__(
"or %0, %L1, %2"
: "=r" (i_result)
: "r" (ll_input), "r" (ll_val));
}
Which results in:
lui $2, %hi(_gp_disp)
addiu $2, $2, %lo(_gp_disp)
addiu $sp, $sp, -8
addu $2, $2, $25
sw $2, 0($sp)
lui $2, 13107
ori $3, $2, 17476 <-- Low 32 bits of ll_input
lui $2, 4369
ori $4, $2, 8738 <-- High 32 bits of ll_input
addiu $5, $zero, 3 <-- Low 32 bits of ll_val
addiu $2, $zero, 0 <-- High 32 bits of ll_val
#APP
or $3, $4, $5 <-- or i_result, high 32 ll_input, low 32 of ll_val
#NO_APP
addiu $sp, $sp, 8
jr $ra
If not direction is done for the long long for 32 bit variables results
in using the low 32 bits as ll_val shows.
There is an existing bug if 'L' or 'D' is used for the destination register
for 32 bit long longs in that the target value will be updated incorrectly
for the non-specified part unless explicitly set within the inline asm code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160028 91177308-0d34-0410-b5e6-96231b3b80d8
generalizing its implementation sufficiently to support this value
number scenario as well.
This cuts out another significant performance hit in large functions
(over 10k basic blocks, etc), especially those with "natural" CFG
structures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160026 91177308-0d34-0410-b5e6-96231b3b80d8
This ordering allows nested if-conversion without using a work list, and
it makes it possible to update the dominator tree on the fly as well.
Any erased basic blocks will always be dominated by the current
post-order position, so the domtree can be pruned without invalidating
the iterator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160025 91177308-0d34-0410-b5e6-96231b3b80d8
X86MachineFunctionInfo as this is currently only used by X86. If this ever
becomes an issue on another arch (e.g., ARM) then we can hoist it back out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160009 91177308-0d34-0410-b5e6-96231b3b80d8
X86. Basically, this is a reapplication of r158087 with a few fixes.
Specifically, (1) the stack pointer is restored from the base pointer before
popping callee-saved registers and (2) in obscure cases (see comments in patch)
we must cache the value of the original stack adjustment in the prologue and
apply it in the epilogue.
rdar://11496434
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160002 91177308-0d34-0410-b5e6-96231b3b80d8