Add tie breaker to colorChainSet() sort so that processing order doesn't
depend on std::set order, which depends on pointer order, which is
unstable from run to run.
No test case as this is nearly impossible to reproduce.
Phabricator Review: http://reviews.llvm.org/D7265
Patch by Geoff Berry <gberry@codeaurora.org>!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227606 91177308-0d34-0410-b5e6-96231b3b80d8
If the original FPU specification involved a restricted VFP unit (d16), ensure
that we reset the functionality when we encounter a new FPU type. In
particular, if the user specified vfpv3-d16, but switched to a VFPv3 (which has
32 double precision registers), we would fail to reset the D16 feature, and
treat it as being equivalent to vfpv3-d16.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227603 91177308-0d34-0410-b5e6-96231b3b80d8
The FPU directive permits the user to switch the target FPU, enabling
instructions that would be otherwise unavailable. However, when configuring the
new subtarget features, we would not enable the implied functions for newer
FPUs. This would result in invalid rejection of valid input. Ensure that we
inherit the implied FPU functionality when enabling newer versions of the FPU.
Fortunately, these are mostly hierarchical, unlike the CPUs.
Addresses PR22395.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227584 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is needed by the .cprestore assembler directive.
This directive needs to be able to insert an LW instruction after every JALR replacement of a JAL pseudo-instruction
(and never after a JALR which has NOT been a result of a pseudo-instruction replacement).
The problem with using InstAlias for these is that after it replaces the pseudo-instruction, we can't find out if the resulting JALR instruction
was generated by an InstAlias or not, so we don't know whether or not to insert our LW instruction.
By replacing it manually, we know when the pseudo-instruction replacement happens and we can insert the LW instruction correctly.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D5601
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227568 91177308-0d34-0410-b5e6-96231b3b80d8
In the large code model, we now put __chkstk in %r11 before calling it.
Refactor the code so that we only do this once. Simplify things by using
__chkstk_ms instead of __chkstk on cygming. We already use that symbol
in the prolog emission, and it simplifies our logic.
Second half of PR18582.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227519 91177308-0d34-0410-b5e6-96231b3b80d8
calls that don't take a Function argument from Mips. Notable
exceptions: the AsmPrinter and MipsTargetObjectFile. The
latter needs to be fixed, and the former will be fixed when the
general AsmPrinter changes happen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227512 91177308-0d34-0410-b5e6-96231b3b80d8
This is just an alias for CALL64pcrel32, and we can just use that opcode
with explicit defs in the MI.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227508 91177308-0d34-0410-b5e6-96231b3b80d8
win64: Call __chkstk through a register with the large code model
Fixes half of PR18582. True dynamic allocas will still have a
CALL64pcrel32 which will fail.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D7267
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227503 91177308-0d34-0410-b5e6-96231b3b80d8
Add tests for the various combines. This should
always be at least cycle neutral on all subtargets for f64,
and faster on some. For f32 we should prefer selecting
v_mad_f32 over v_fma_f32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227484 91177308-0d34-0410-b5e6-96231b3b80d8
The use of the DbgLoc in FastISel is probably something we should fix.
It's prone to leaking the wrong location into instructions - we should
have a clear chain of custody from the debug location of an IR
Instruction to that of a MachineInstr to avoid such leakage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227481 91177308-0d34-0410-b5e6-96231b3b80d8
Any code creating an MCSectionELF knows ELF and already provides the flags.
SectionKind is an abstraction used by common code that uses a plain
MCSection.
Use the flags to compute the SectionKind. This removes a lot of
guessing and boilerplate from the MCSectionELF construction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227476 91177308-0d34-0410-b5e6-96231b3b80d8
For large stack offsets the compiler generates multiple immediate mode
sub/add instructions in the prologue/epilogue. This patch makes the
compiler place the final amount to be added/subtracted into a register,
which is then added/substracted with a single operation.
Differential Revision: http://reviews.llvm.org/D7226
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227458 91177308-0d34-0410-b5e6-96231b3b80d8