to determine where to place PHIs by iteratively comparing reaching definitions
at each block. That was just plain wrong. This version now computes the
dominator tree within the subset of the CFG where PHIs may need to be placed,
and then places the PHIs in the iterated dominance frontier of each definition.
The rest of the patch is mostly the same, with a few more performance
improvements added in.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101612 91177308-0d34-0410-b5e6-96231b3b80d8
case. Also, the 0xFF hex literal involved in the shift for ESize64 should be
suffixed "ul" to preserve the shift result.
Implemented printHex*ImmOperand() by copying from ARMAsmPrinter.cpp and added a
test case for DisassembleN1RegModImmFrm()/printHex64ImmOperand().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101557 91177308-0d34-0410-b5e6-96231b3b80d8
to the UAL syntax of LDCL<c>, instead.
Add a test case for this change which also tests the removal of assert() from
printAddrMode2OffsetOperand().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101527 91177308-0d34-0410-b5e6-96231b3b80d8
dependent analyses, and increase code size, so doing it profitably would
require more complex heuristics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101471 91177308-0d34-0410-b5e6-96231b3b80d8
callee is expected to be expanded to something else by codegen, so that
normal infinitely recursive calls are still transformed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101468 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't occur much at all, it only seems to formed in the case
when the trunc optimization kicks in due to phase ordering. In that
case it is saves a few bytes on x86-32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101350 91177308-0d34-0410-b5e6-96231b3b80d8
a load/or/and/store sequence into a narrower store when it is
safe. Daniel tells me that clang will start producing this sort
of thing with bitfields, and this does trigger a few dozen times
on 176.gcc produced by llvm-gcc even now.
This compiles code like CodeGen/X86/2009-05-28-DAGCombineCrash.ll
into:
movl %eax, 36(%rdi)
instead of:
movl $4294967295, %eax ## imm = 0xFFFFFFFF
andq 32(%rdi), %rax
shlq $32, %rcx
addq %rax, %rcx
movq %rcx, 32(%rdi)
and each of the testcases into a single store. Each of them used
to compile into craziness like this:
_test4:
movl $65535, %eax ## imm = 0xFFFF
andl (%rdi), %eax
shll $16, %esi
addl %eax, %esi
movl %esi, (%rdi)
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101343 91177308-0d34-0410-b5e6-96231b3b80d8
current PC. rdar://7834775
We now produce an identical .o file compared to the cctools
assembler for something like this:
_f0:
L0:
jmp L1
.long . - L0
L1:
jmp A
.long . - L1
.zerofill __DATA,_bss,A,0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101227 91177308-0d34-0410-b5e6-96231b3b80d8
This test relies on iSel lowering dbg_declare intrinsic when CodeGen::OptLevel is None. On PPC side, CodeGen::OptLevel stays to default when -O0 is used on the command line.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101190 91177308-0d34-0410-b5e6-96231b3b80d8
numerator is an induction variable. For example, with code like this:
for (i=0;i<n;++i)
x[i%n] = 0;
IndVarSimplify will now recognize that i is always less than n inside
the loop, and eliminate the remainder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101113 91177308-0d34-0410-b5e6-96231b3b80d8
If we have this situation:
jCC L1
jmp L2
L1:
...
L2:
...
We can get a small performance boost by emitting this instead:
jnCC L2
L1:
...
L2:
...
This testcase shows an example of this:
float func(float x, float y) {
double product = (double)x * y;
if (product == 0.0)
return product;
return product - 1.0;
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101075 91177308-0d34-0410-b5e6-96231b3b80d8
expression is a UDiv and it doesn't appear that the UDiv came from
the user's source.
ScalarEvolution has recently figured out how to compute a tripcount
expression for the inner loop in
SingleSource/Benchmarks/Shootout/sieve.c, using a udiv. Emitting a
udiv instruction dramatically slows down the enclosing loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101068 91177308-0d34-0410-b5e6-96231b3b80d8