From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241413 91177308-0d34-0410-b5e6-96231b3b80d8
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241411 91177308-0d34-0410-b5e6-96231b3b80d8
The assertion in getCopyFromPartsVector assumed that the vector 'part' must
match the type of argument (arguments are potentially split into multiple
parts). However, in some cases the targets return a 'part' of the right size
but with a different type. We already handle this case correctly later on
and generate a bitcast. This commit just makes sure that we are actually
checking the property that we care about.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241312 91177308-0d34-0410-b5e6-96231b3b80d8
This commit changes normal isel and fast isel to read the user-defined trap
function name from function attribute "trap-func-name" attached to llvm.trap or
llvm.debugtrap instead of from TargetOptions::TrapFuncName. This is needed to
use clang's command line option "-ftrap-function" for LTO and enable changing
the trap function name on a per-call-site basis.
Out-of-tree projects currently using TargetOptions::TrapFuncName to specify the
trap function name should attach attribute "trap-func-name" to the call sites
of llvm.trap and llvm.debugtrap instead.
rdar://problem/21225723
Differential Revision: http://reviews.llvm.org/D10832
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241305 91177308-0d34-0410-b5e6-96231b3b80d8
The code responsible for shl folding in the DAGCombiner was assuming incorrectly that all constants are less than 64 bits. This patch simply changes the way values are compared.
It has been reverted previously because of some problems with comparing APInt with raw uint64_t. That has been fixed/changed with r241204.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241254 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This patch fixes the cases of sext/zext constant folding in DAG combiner where constans do not fit 64 bits. The fix simply removes un$
Test Plan: New regression test included.
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: RKSimon, llvm-commits
Differential Revision: http://reviews.llvm.org/D10607
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240991 91177308-0d34-0410-b5e6-96231b3b80d8
We had a hack in SDAGBuilder in place to work around this but now we
can avoid that. Call BuildExactSDIV from BuildSDIV so DAGCombiner can
perform this trick automatically.
The added check in DAGCombiner is necessary to prevent exact sdiv by pow2
from regressing as the target-specific pow2 lowering is not aware of
exact bits yet.
This is mostly covered by existing tests. One side effect is that we
get the better lowering for exact vector sdivs now too :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240891 91177308-0d34-0410-b5e6-96231b3b80d8
The body of the loops here only contained asserts. This triggered an unused variable
warning on release builds and -Werror on the bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240819 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch fixes PR23405 (https://llvm.org/bugs/show_bug.cgi?id=23405).
During a node unscheduling an entry in LiveRegGens can be replaced with a new value. That corrupts the live reg tracking and LiveReg* structure is not cleared as should be during unscheduling. Problematic condition that enforces Gen replacement is `I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight()`. This condition should be checked only if LiveRegGen was set in current node unscheduling.
Test Plan: Regression test included.
Reviewers: hfinkel, atrick
Reviewed By: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9993
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240538 91177308-0d34-0410-b5e6-96231b3b80d8
The summary is that it moves the mangling earlier and replaces a few
calls to .addExternalSymbol with addSym.
I originally wanted to replace all the uses of addExternalSymbol with
addSym, but noticed it was a lot of work and doesn't need to be done
all at once.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240395 91177308-0d34-0410-b5e6-96231b3b80d8
Before this we were producing a TargetExternalSymbol from a MCSymbol.
That meant extracting the symbol name and fetching the symbol again
down the pipeline.
This patch adds a DAG.getMCSymbol that lets the MCSymbol pass unchanged on the
DAG.
Doing so removes the need for MO_NOPREFIX and fixes the root cause of pr23900,
allowing r240130 to be committed again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240300 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: The code responsible for shl folding in the DAGCombiner was assuming incorrectly that all constants are less than 64 bits. This patch simply changes the way values are compared.
Test Plan: A regression test included.
Reviewers: andreadb
Reviewed By: andreadb
Subscribers: andreadb, test, llvm-commits
Differential Revision: http://reviews.llvm.org/D10602
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240291 91177308-0d34-0410-b5e6-96231b3b80d8
This will allow classes to implement the AA interface without deriving
from the class or referencing an internal enum of some other class as
their return types.
Also, to a pretty fundamental extent, concepts such as 'NoAlias',
'MayAlias', and 'MustAlias' are first class concepts in LLVM and we
aren't saving anything by scoping them heavily.
My mild preference would have been to use a scoped enum, but that
feature is essentially completely broken AFAICT. I'm extremely
disappointed. For example, we cannot through any reasonable[1] means
construct an enum class (or analog) which has scoped names but converts
to a boolean in order to test for the possibility of aliasing.
[1]: Richard Smith came up with a "solution", but it requires class
templates, and lots of boilerplate setting up the enumeration multiple
times. Something like Boost.PP could potentially bundle this up, but
even that would be quite painful and it doesn't seem realistically worth
it. The enum class solution would probably work without the need for
a bool conversion.
Differential Revision: http://reviews.llvm.org/D10495
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240255 91177308-0d34-0410-b5e6-96231b3b80d8
Sparse switches with profile info are lowered as weight-balanced BSTs. For
example, if the node weights are {1,1,1,1,1,1000}, the right-most node would
end up in a tree by itself, bringing it closer to the top.
However, a leaf in this BST can contain up to 3 cases, and having a single
case in a leaf node as in the example means the tree might become
unnecessarily high.
This patch adds a heauristic to the pivot selection algorithm that moves more
cases into leaf nodes unless that would lower their rank. It still doesn't
yield the optimal tree in every case, but I believe it's conservatibely correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240224 91177308-0d34-0410-b5e6-96231b3b80d8
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8
To same compile time, the analysis to find dense case-clusters in switches is
not done at -O0. However, when the whole switch is dense enough, it is easy to
turn it into a jump table, resulting in much faster code with no extra effort.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240071 91177308-0d34-0410-b5e6-96231b3b80d8
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239940 91177308-0d34-0410-b5e6-96231b3b80d8
that it is its own entity in the form of MemoryLocation, and update all
the callers.
This is an entirely mechanical change. References to "Location" within
AA subclases become "MemoryLocation", and elsewhere
"AliasAnalysis::Location" becomes "MemoryLocation". Hope that helps
out-of-tree folks update.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239885 91177308-0d34-0410-b5e6-96231b3b80d8
This is an updated version of the patch that was checked in at:
http://reviews.llvm.org/rL237046
but subsequently reverted because it exposed a bug in the DAG Combiner:
http://reviews.llvm.org/D9893
This time, there's an enablement flag ("EnableFMFInDAG") around the code in
SelectionDAGBuilder where we copy the set of FP optimization flags from IR
instructions to DAG nodes. So, in theory, there should be no functional change
from this patch as-is, but it will allow testing with the added functionality
to proceed via "-enable-fmf-dag" passed to llc.
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
Differential Revision: http://reviews.llvm.org/D10403
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239828 91177308-0d34-0410-b5e6-96231b3b80d8
Reapply r239539. Don't assume the collected number of
stores is the same vector size. Just take the first N
stores to fill the vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239825 91177308-0d34-0410-b5e6-96231b3b80d8
Now actually stores the non-zero constant instead of 0.
I somehow forgot to include this part of r238108.
The test change was just an independent instruction order swap,
so just add another check line to satisfy CHECK-NEXT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239539 91177308-0d34-0410-b5e6-96231b3b80d8
During statepoint lowering we can sometimes avoid spilling of the value if we know that it was already spilled for previous statepoint.
We were doing this by checking if incoming statepoint value was lowered into load from stack slot. This was working only in boundaries of one basic block.
But instead of looking at the lowered node we can look directly at the llvm-ir value and if it was gc.relocate (or some simple modification of it) look up stack slot for it's derived pointer and reuse stack slot from it. This allows us to look across basic block boundaries.
Differential Revision: http://reviews.llvm.org/D10251
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239472 91177308-0d34-0410-b5e6-96231b3b80d8
This gets all the handler info through to the asm printer and we can
look at the .xdata tables now. I've convinced one small catch-all test
case to work, but other than that, it would be a stretch to say this is
functional.
The state numbering algorithm avoids doing any scope reconstruction as
we do for C++ to simplify the implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239433 91177308-0d34-0410-b5e6-96231b3b80d8