I've been sitting on this long enough trying to find a test case. I
think the fix should go in now, but I'll keep working on the test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132701 91177308-0d34-0410-b5e6-96231b3b80d8
When local live range splitting creates a live range with the same
number of instructions as the old range, mark it as RS_Local. When such
a range is seen again, require that it be split in a way that reduces
the number of instructions. That guarantees we are making progress while
still being able to perform 3 -> 2+3 splits as required by PR10070.
This also means that the PrevSlot map is no longer needed. This was also
used to estimate new spill weights, but that is no longer necessary
after slotIndexes::insertMachineInstrInMaps() got the extra Late
insertion argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132697 91177308-0d34-0410-b5e6-96231b3b80d8
Only target-dependent hints require callbacks. The RCI allocation order
has CSR aliases last according to their order of appearance in the
getCalleeSavedRegs list. This can depend on the calling convention.
This way, AllocationOrder::next doesn't have to check for reserved
registers, and CSRs are always allocated last, even with weird calling
conventions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132690 91177308-0d34-0410-b5e6-96231b3b80d8
The order of registers returned by getCalleeSavedRegs is used to lay out
the fixed stack slots for CSRs. Some targets like their CSRs used from
one end, and some targets want them used from the other end.
When computing an allocation order, simply preserve the relative
ordering of CSRs that the target specifies in its allocation order.
Reordering CSRs would break some targets, ARM in particular.
We still place volatiles before the CSRs, providing slightly better
results with different calling conventions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132680 91177308-0d34-0410-b5e6-96231b3b80d8
VK_GOTOFF reloc. This matches as' behavior, but it is not clear why the linker
might need this, so I added a FIXME.
I could test this by duplicating test/MC/ELF/got.s, but it doesn't look
worthwhile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132655 91177308-0d34-0410-b5e6-96231b3b80d8
(only happens when using the -promote-elements option).
The correct legalization order is to first try to promote element. Next, we try
to widen vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132648 91177308-0d34-0410-b5e6-96231b3b80d8
then we don't want to set the destination in the indirect branch to the
destination. This is because the indirect branch needs its destinations to have
had their block addresses taken. This isn't so of the new critical edge that's
split during this process. If it turns out that the destination block has only
one predecessor, and that being a BB with an indirect branch, then it won't be
marked as 'used' and may be removed.
PR10072
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132638 91177308-0d34-0410-b5e6-96231b3b80d8
redundant with partially-aliasing loads.
When computing what portion of a clobbering load value is needed,
it doesn't consider phi-translation which may have occurred
between the clobbing load and the redundant load.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132631 91177308-0d34-0410-b5e6-96231b3b80d8
A TableGen backend can define how certain classes can be expanded into
ordered sets of defs, typically by evaluating a specific field in the
record. The SetTheory class can then evaluate DAG expressions that refer
to these named sets.
A number of standard set and list operations are predefined, and the
backend can add more specialized operators if needed. The -print-sets
backend is used by SetTheory.td to provide examples.
This is intended to simplify how register classes are defined:
def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132621 91177308-0d34-0410-b5e6-96231b3b80d8
BranchProbabilityInfo provides an interface for IR passes to query the
likelihood that control follows a CFG edge. This patch provides an
initial implementation of static branch predication that will populate
BranchProbabilityInfo for branches with no external profile
information using very simple heuristics. It currently isn't hooked up
to any external profile data, so static prediction does all the work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132613 91177308-0d34-0410-b5e6-96231b3b80d8
queries in the case of a DAG, where a query reaches a node
visited earlier, but it's not on a cycle. This avoids
MayAlias results in cases where BasicAA is expected to
return MustAlias or PartialAlias in order to protect TBAA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132609 91177308-0d34-0410-b5e6-96231b3b80d8
Materializing the stack pointer update before a call requires a scratch
register that may not be available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132601 91177308-0d34-0410-b5e6-96231b3b80d8
of reserved registers.
Use RegisterClassInfo in RABasic as well. This slightly changes som
allocation orders because RegisterClassInfo puts CSR aliases last.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132581 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, these aliases would be ordered alphabetically. (BH, BL)
Print out the computed allocation orders.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132580 91177308-0d34-0410-b5e6-96231b3b80d8