in exposing the scalar value to the broadcast DAG fragment so that we
can catch even reloads and fold them into the broadcast.
This is somewhat magical I'm afraid but seems to work. It is also what
the old lowering did, and I've switched an old test to run both
lowerings demonstrating that we get the same result.
Unlike the old code, I'm not lowering f32 or f64 scalars through this
path when we only have AVX1. The target patterns include pretty heinous
code to re-cast those as shuffles when the scalar happens to not be
spilled because AVX1 provides no broadcast mechanism from registers
what-so-ever. This is terribly brittle. I'd much rather go through our
generic lowering code to get this. If needed, we can add a peephole to
get even more opportunities to broadcast-from-spill-slots that are
exposed post-RA, but my suspicion is this just doesn't matter that much.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218734 91177308-0d34-0410-b5e6-96231b3b80d8
the same speed as pshufd but we can fold loads into the pmovzx
instructions.
This fixes some regressions that came up in the regression test suite
for the new vector shuffle lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218733 91177308-0d34-0410-b5e6-96231b3b80d8
This can be used for in-place initialization of non-moveable types.
For compilers that don't support variadic templates, only up to four
arguments are supported. We can always add more, of course, but this
should be good enough until we move to a later MSVC that has full
support for variadic templates.
Inspired by std::experimental::optional from the "Library Fundamentals" C++ TS.
Reviewed by David Blaikie.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218732 91177308-0d34-0410-b5e6-96231b3b80d8
This allows proper disambiguation of unbounded arrays and arrays of zero
bound ("struct foo { int x[]; };" and "struct foo { int x[0]; }"). GCC
instead produces an upper bound of -1 in the latter situation, but count
seems tidier. This way lower_bound is provided if it's not the language
default and count is provided if the count is known, otherwise it's
omitted. Simple.
If someone wants to look at rdar://problem/12566646 and see if this
change is acceptable to that bug/fix, that might be helpful (see the
empty-and-one-elem-array.ll test case which cites that radar).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218726 91177308-0d34-0410-b5e6-96231b3b80d8
VPBROADCAST.
This has the somewhat expected pervasive impact. I don't know why
I forgot about this. Everything seems good with lots of significant
improvements in the tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218724 91177308-0d34-0410-b5e6-96231b3b80d8
In special cases select instructions can be eliminated by
replacing them with a cheaper bitwise operation even when the
select result is used outside its home block. The instances implemented
are patterns like
%x=icmp.eq
%y=select %x,%r, null
%z=icmp.eq|neq %y, null
br %z,true, false
==> %x=icmp.ne
%y=icmp.eq %r,null
%z=or %x,%y
br %z,true,false
The optimization is integrated into the instruction
combiner and performed only when all uses of the select result can
be replaced by the select operand proper. For this dominator information
is used and dominance is now a required analysis pass in the combiner.
The optimization itself is iterative. The critical step is to replace the
select result with the non-constant select operand. So the select becomes
local and the combiner iteratively works out simpler code pattern and
eventually eliminates the select.
rdar://17853760
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218721 91177308-0d34-0410-b5e6-96231b3b80d8
Two related things:
1. Fixes a bug when calculating the offset in GetLinearExpression. The code
previously used zext to extend the offset, so negative offsets were converted
to large positive ones.
2. Enhance aliasGEP to deduce that, if the difference between two GEP
allocations is positive and all the variables that govern the offset are also
positive (i.e. the offset is strictly after the higher base pointer), then
locations that fit in the gap between the two base pointers are NoAlias.
Patch by Nick White!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218714 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change. Pre-emptive refactoring before I start pushing
some of this subprogram creation down into DWARFCompileUnit so I can
build different subprograms in the skeleton unit from the dwo unit for
adding -gmlt-like data to the skeleton.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218713 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds a threshold that controls the number of bonus instructions
allowed for folding branches with common destination. The original code allows
at most one bonus instruction. With this patch, users can customize the
threshold to allow multiple bonus instructions. The default threshold is still
1, so that the code behaves the same as before when users do not specify this
threshold.
The motivation of this change is that tuning this threshold significantly (up
to 25%) improves the performance of some CUDA programs in our internal code
base. In general, branch instructions are very expensive for GPU programs.
Therefore, it is sometimes worth trading more arithmetic computation for a more
straightened control flow. Here's a reduced example:
__global__ void foo(int a, int b, int c, int d, int e, int n,
const int *input, int *output) {
int sum = 0;
for (int i = 0; i < n; ++i)
sum += (((i ^ a) > b) && (((i | c ) ^ d) > e)) ? 0 : input[i];
*output = sum;
}
The select statement in the loop body translates to two branch instructions "if
((i ^ a) > b)" and "if (((i | c) ^ d) > e)" which share a common destination.
With the default threshold, SimplifyCFG is unable to fold them, because
computing the condition of the second branch "(i | c) ^ d > e" requires two
bonus instructions. With the threshold increased, SimplifyCFG can fold the two
branches so that the loop body contains only one branch, making the code
conceptually look like:
sum += (((i ^ a) > b) & (((i | c ) ^ d) > e)) ? 0 : input[i];
Increasing the threshold significantly improves the performance of this
particular example. In the configuration where both conditions are guaranteed
to be true, increasing the threshold from 1 to 2 improves the performance by
18.24%. Even in the configuration where the first condition is false and the
second condition is true, which favors shortcuts, increasing the threshold from
1 to 2 still improves the performance by 4.35%.
We are still looking for a good threshold and maybe a better cost model than
just counting the number of bonus instructions. However, according to the above
numbers, we think it is at least worth adding a threshold to enable more
experiments and tuning. Let me know what you think. Thanks!
Test Plan: Added one test case to check the threshold is in effect
Reviewers: nadav, eliben, meheff, resistor, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D5529
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218711 91177308-0d34-0410-b5e6-96231b3b80d8
cases.
While clearly we don't need the AVX vector width, these ISA extensions
often cause us to select different instructions and we should cover them
even with the narrow vector width.
Also, while here, nuke the stress_test2 contents. There is no reason to
try to FileCheck this entire body when it is mostly a test for
successfully surviving the code generator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218710 91177308-0d34-0410-b5e6-96231b3b80d8
shuffle tests to match that used in the script I posted and now used
consistently in 128-bit tests.
Nothing interesting changing here, just using the label name as the
FileCheck label and a slightly more general comment marker consumption
strategy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218709 91177308-0d34-0410-b5e6-96231b3b80d8
updating script so that they are more thorough and consistent.
Specific fixes here include:
- Actually test VEX-encoded AVX mnemonics.
- Actually use an SSE 4.1 run to test SSE 4.1 features!
- Correctly check instructions sequences from the start of the function.
- Elide the shuffle operands and comment designator in a consistent way.
- Test all of the architectures instead of just the ones I was motivated
to manually author.
I've gone back through and fixed up any egregious issues I spotted. Let
me know if I missed something you really dislike.
One downside to this is that we're now not as diligently using FileCheck
variables for registers. I would be much more concerned with this if we
had larger register usage, but there just aren't that interesting of
register choices here and most of the registers are constrained by the
ABI. Ultimately, I don't think this is likely to be the maintenance
burden for these tests and updating them again should be staright
forward.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218707 91177308-0d34-0410-b5e6-96231b3b80d8
r218129 omits DW_TAG_subprograms which have no inlined subroutines when
emitting -gmlt data. This makes -gmlt very low cost for -O0 builds.
Darwin's dsymutil reasonably considers a CU empty if it has no
subprograms (which occurs with the above optimization in -O0 programs
without any force_inline function calls) and drops the line table, CU,
and everything in this situation, making backtraces impossible.
Until dsymutil is modified to account for this, disable this
optimization on Darwin to preserve the desired functionality.
(see r218545, which should be reverted after this patch, for other
discussion/details)
Footnote:
In the long term, it doesn't look like this scheme (of simplified debug
info to describe inlining to enable backtracing) is tenable, it is far
too size inefficient for optimized code (the DW_TAG_inlined_subprograms,
even once compressed, are nearly twice as large as the line table
itself (also compressed)) and we'll be considering things like Cary's
two level line table proposal to encode all this information directly in
the line table.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218702 91177308-0d34-0410-b5e6-96231b3b80d8
It was hacky to use an opcode as a switch because it won't always match
(rsqrte != sqrte), and it looks like we'll need to add more special casing
per arch than I had hoped for. Eg, x86 will prefer a different NR estimate
implementation. ARM will want to use it's 'step' instructions. There also
don't appear to be any new estimate instructions in any arch in a long,
long time. Altivec vloge and vexpte may have been the first and last in
that field...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218698 91177308-0d34-0410-b5e6-96231b3b80d8
Note: This version fixed an issue with the TBZ/TBNZ instructions that were
generated in FastISel. The issue was that the 64bit version of TBZ (TBZX)
automagically sets the upper bit of the immediate field that is used to specify
the bit we want to test. To test for any of the lower 32bits we have to first
extract the subregister and use the 32bit version of the TBZ instruction (TBZW).
Original commit message:
Teach selectBranch to fold bit test and branch into a single instruction (TBZ or
TBNZ).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218693 91177308-0d34-0410-b5e6-96231b3b80d8
No tests for omod since nothing uses it yet, but
this should get rid of the remaining annoying trailing
zeros after some instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218692 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, the DAG Combiner only tries to convert type-legal build_vector nodes
into shuffles. This patch simply moves the logic that checks if a
build_vector has a legal value type up before we even start analyzing the
operands. This allows to early exit immediately from method
'visitBUILD_VECTOR' if the node type is known to be illegal.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218677 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a test which checks that the functions defined in header files will get associated with the header files rather than the source files in the reports.
Differential Revision: http://reviews.llvm.org/D5489
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218673 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed lowering of this intrinsics in case when mask is v2i1 and v4i1.
Now cmp intrinsics lower in the following way:
(i8 (int_x86_avx512_mask_pcmpeq_q_128
(v2i64 %a), (v2i64 %b), (i8 %mask))) ->
(i8 (bitcast
(v8i1 (insert_subvector undef,
(v2i1 (and (PCMPEQM %a, %b),
(extract_subvector
(v8i1 (bitcast %mask)), 0))), 0))))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218669 91177308-0d34-0410-b5e6-96231b3b80d8
a flawed direction and causing miscompiles. Read on for details.
Fundamentally, the premise of this patch series was to map
VECTOR_SHUFFLE DAG nodes into VSELECT DAG nodes for all blends because
we are going to *have* to lower to VSELECT nodes for some blends to
trigger the instruction selection patterns of variable blend
instructions. This doesn't actually work out so well.
In order to match performance with the existing VECTOR_SHUFFLE
lowering code, we would need to re-slice the blend in order to fit it
into either the integer or floating point blends available on the ISA.
When coming from VECTOR_SHUFFLE (or other vNi1 style VSELECT sources)
this works well because the X86 backend ensures that these types of
operands to VSELECT get sign extended into '-1' and '0' for true and
false, allowing us to re-slice the bits in whatever granularity without
changing semantics.
However, if the VSELECT condition comes from some other source, for
example code lowering vector comparisons, it will likely only have the
required bit set -- the high bit. We can't blindly slice up this style
of VSELECT. Reid found some code using Halide that triggers this and I'm
hopeful to eventually get a test case, but I don't need it to understand
why this is A Bad Idea.
There is another aspect that makes this approach flawed. When in
VECTOR_SHUFFLE form, we have very distilled information that represents
the *constant* blend mask. Converting back to a VSELECT form actually
can lose this information, and so I think now that it is better to treat
this as VECTOR_SHUFFLE until the very last moment and only use VSELECT
nodes for instruction selection purposes.
My plan is to:
1) Clean up and formalize the target pre-legalization DAG combine that
converts a VSELECT with a constant condition operand into
a VECTOR_SHUFFLE.
2) Remove any fancy lowering from VSELECT during *legalization* relying
entirely on the DAG combine to catch cases where we can match to an
immediate-controlled blend instruction.
One additional step that I'm not planning on but would be interested in
others' opinions on: we could add an X86ISD::VSELECT or X86ISD::BLENDV
which encodes a fully legalized VSELECT node. Then it would be easy to
write isel patterns only in terms of this to ensure VECTOR_SHUFFLE
legalization only ever forms the fully legalized construct and we can't
cycle between it and VSELECT combining.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218658 91177308-0d34-0410-b5e6-96231b3b80d8
The sign-/zero-extension of the loaded value can be performed by the memory
instruction for free. If the result of the load has only one use and the use is
a sign-/zero-extend, then we emit the proper load instruction. The extend is
only a register copy and will be optimized away later on.
Other instructions that consume the sign-/zero-extended value are also made
aware of this fact, so they don't fold the extend too.
This fixes rdar://problem/18495928.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218653 91177308-0d34-0410-b5e6-96231b3b80d8
Factor out the code that determines the implicit scale factor of memory
operations for a given value type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218652 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality change.
Makes the code more compact (see the FMA part).
This needs a new type attribute MemOpFrag in X86VectorVTInfo. For now I only
defined this in the simple cases. See the commment before the attribute.
Diff of X86.td.expanded before and after is empty except for the appearance of
the new attribute.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218637 91177308-0d34-0410-b5e6-96231b3b80d8
map, this makes sure that we can compile the same code for two different
ABIs (hard and soft float) in the same module.
Update one testcase accordingly (and fix some confusing naming) and
add a new testcase as well with the ordering swapped which would
highlight the problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218632 91177308-0d34-0410-b5e6-96231b3b80d8