The cpp backend is not a reasonable fallback for a missing target. It is a
very special backend, so it is reasonable to use it only if explicitly
requested.
While at it, simplify the interface a bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197241 91177308-0d34-0410-b5e6-96231b3b80d8
This commit does not complete the type units feature - there are issues
around fission support (skeletal type units, pubtypes/pubnames) and
hashing of some types including those containing references to types in
other type units.
Originally committed as r197073 and reverted in r197079.
Recommitted as r197197 to reproduce the failure and reverted as r197199
Turns out there was unstable ordering in the type unit dumping code.
Fixed by using MapVector in DWARFContext to store the debug_types
comdat sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197210 91177308-0d34-0410-b5e6-96231b3b80d8
This option tells llvm-cov to print out branch probabilities when
a basic block contains multiple branches. It also prints out some
function summary info including the number of times the function enters,
the percent of time it returns, and how many blocks were executed.
Also updated tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197198 91177308-0d34-0410-b5e6-96231b3b80d8
This commit does not complete the type units feature - there are issues
around fission support (skeletal type units, pubtypes/pubnames) and
hashing of some types including those containing references to types in
other type units.
Originally committed as r197073 and reverted in r197079.
This commit originally got jumbled up with another build-breaking commit
and I can't find the failures I thought this caused anymore.
Recommitting to hopefully get some clean buildbot results to work from.
I have a sneaking suspicion there's unstable output in the comdat group
output of MCStreamer...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197197 91177308-0d34-0410-b5e6-96231b3b80d8
SDep had is* functions for the other kinds of order dependencies (isMustAlias,
isWeak, isArtificial, etc.), but not for barrier. Upcoming commits in the
PowerPC backend will make use of this function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197098 91177308-0d34-0410-b5e6-96231b3b80d8
Both FileCheck and clang's -verify need to escape strings for regexes,
so let's expose this as a utility in the Regex class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197096 91177308-0d34-0410-b5e6-96231b3b80d8
This adds two additional functions to the hazard recognizer interface. These
are optional (in the sense that the default implementations preserve the
current behavior), and used by the post-RA scheduler. Upcoming commits will use
this functionality in order to improve dispatch-group formation on the POWER7
and related cores. Dispatch groups are an odd construct: sometimes we need to
insert nops to force a new one to start (for performance reasons), and some
instructions need to appear in certain positions within a group, but the groups
are not fundamentally cycle based (they can contain instructions with data
dependencies with non-trivial latencies).
Motivation:
unsigned PreEmitNoops(SUnit *) - Used to force the post-RA scheduler to insert
nops to force a new dispatch group to begin. We already have a NoopHazard, and
this is also still needed. However, NoopHazard only causes a nop to be inserted
if there are no other available instructions, and so is not always sufficient.
The number of nops to insert depends on state that only the hazard recognizer
has, so a general callback is necessary.
bool ShouldPreferAnother(SUnit *) - Used to avoid scheduling instructions that
would start a new dispatch group when others are available that could be part
of the current dispatch group. In this case, we don't want to issue nops,
because the non-preferred instruction will implicitly start a new dispatch
group regardless.
Although the motivation for these functions is driven by the PowerPC backend,
they are completely general.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197084 91177308-0d34-0410-b5e6-96231b3b80d8
The linkers on these systems don't have anything special to do with these
symbols. Since the intent is for them to be absent from the final object,
just treat them as private.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197080 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r197073.
The test seems to be failing on some buildbots for unknown reasons.
Reverting until I can figure that out. If anyone's got a reproduction
(.s and .o together would be great) - I'd really appreciate it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197079 91177308-0d34-0410-b5e6-96231b3b80d8
This commit does not complete the type units feature - there are issues
around fission support (skeletal type units, pubtypes/pubnames) and
hashing of some types including those containing references to types in
other type units.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197073 91177308-0d34-0410-b5e6-96231b3b80d8
floating-point reciprocal square root step LLVM AArch64 intrinsics to
use f32/f64 types, rather than their vector equivalents.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197067 91177308-0d34-0410-b5e6-96231b3b80d8
point reciprocal exponent, and floating-point reciprocal square root estimate
LLVM AArch64 intrinsics to use f32/f64 types, rather than their vector
equivalents.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197066 91177308-0d34-0410-b5e6-96231b3b80d8
This hook reverses the order of assignment for local live ranges. This
will generally allocate shorter local live ranges first. For targets with
many registers, this could reduce regalloc compile time by a large
factor. It should still achieve optimal coloring; however, it can change
register eviction decisions. It is disabled by default for two reasons:
(1) Top-down allocation is simpler and easier to debug for targets that
don't benefit from reversing the order.
(2) Bottom-up allocation could result in poor evicition decisions on some
targets affecting the performance of compiled code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197001 91177308-0d34-0410-b5e6-96231b3b80d8
This re-lands commit r196876, which was reverted in r196879.
The tests have been fixed to pass on platforms with a stack alignment
larger than 4.
Update to clang side tests will land shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196939 91177308-0d34-0410-b5e6-96231b3b80d8
Most users would be surprised if "isCOFF" and "isMachO" were simultaneously
true, unless they'd put the compiler in a box with a gun attached to a photon
detector.
This makes sure precisely one of the three formats is true for any triple and
simplifies some target logic based on that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196934 91177308-0d34-0410-b5e6-96231b3b80d8
The docstrings were describing an older interface that has been replaced with
functions.
Also describe the performance characteristics of FindProgramByName() and
ExecuteAndWait() explaining when it's best to avoid them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196932 91177308-0d34-0410-b5e6-96231b3b80d8
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.
Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.
The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences. It is a no-op for targets other than SystemZ.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196905 91177308-0d34-0410-b5e6-96231b3b80d8
For stack frames requiring realignment, three pointers may be needed:
- ebp to address incoming arguments
- esi (could be any callee-saved register) to address locals
- esp to address outgoing arguments
We would use esi unconditionally without verifying that it did not
conflict with inline assembly.
This change doesn't do the verification, it simply emits a fatal error
on functions that use stack realignment, dynamic SP adjustments, and
inline assembly.
Because stack realignment is common on Windows, we also no longer assume
that MS inline assembly clobbers esp. Instead, we analyze the inline
instructions for implicit definitions and check if esp is there. If so,
we require the use of a base pointer and consider it in the condition
above.
Mostly fixes PR16830, but we could try harder to find a non-conflicting
base pointer.
Reviewers: sunfish
Differential Revision: http://llvm-reviews.chandlerc.com/D1317
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196876 91177308-0d34-0410-b5e6-96231b3b80d8
MCJIT needs to be able to run in hostile environments, even when PWD
is invalid. There's no need to crash MCJIT in this case.
The obvious fix is to simply leave MCContext's CompilationDir empty
when PWD can't be determined. This way, MCJIT clients,
and other clients that link with LLVM don’t need a valid working directory.
If we do want to guarantee valid CompilationDir, that should be done
only for clients of getCompilationDir(). This is as simple as checking
for an empty string.
The only current use of getCompilationDir is EmitGenDwarfInfo, which
won’t conceivably run with an invalid working dir. However, in the
purely hypothetically and untestable case that this happens, the
AT_comp_dir will be omitted from the compilation_unit DIE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196874 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to gcov, llvm-cov will now print out the block count at the end
of each block. Multiple blocks can end on the same line.
One computational difference is by using -a, llvm-cov will no longer
simply add the block counts together to form a line count. Instead, it
will take the maximum of the block counts on that line. This has a
similar effect to what gcov does, but generates more correct counts in
certain scenarios.
Also updated tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196856 91177308-0d34-0410-b5e6-96231b3b80d8
They were out of place since the introduction of arbitrary precision integer
types.
This also synchronizes the documentation to Types.h, so it refers to first class
types and single value types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196661 91177308-0d34-0410-b5e6-96231b3b80d8
These helper classes take care of the book-keeping the drives the
GenericScheduler heuristics. It is likely that developers writing
target-specific schedulers that work similarly to GenericScheduler
will want to use these helpers too. The immediate goal is to develop a
GenericPostScheduler that can run in place of the old PostRAScheduler,
but will use the new machine model.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196643 91177308-0d34-0410-b5e6-96231b3b80d8
The sefault occurs due to an infinite loop when the verifier tries to
determine the size of a type of the form "%rt = type { %rt }" while
checking an alloca of the type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196626 91177308-0d34-0410-b5e6-96231b3b80d8
lib/Transforms/Instrumentation/AddressSanitizer.cpp:1405:36: error: non-constant-expression cannot be narrowed from type 'uint64_t' (aka 'unsigned long long') to 'size_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]
getAllocaSizeInBytes(AI),
^~~~~~~~~~~~~~~~~~~~~~~~
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196623 91177308-0d34-0410-b5e6-96231b3b80d8
This commit caches the value of the AllowAtInIdentifier variable as
a class variable in AsmLexer. We do this to avoid repeated MAI
queries and string comparisons each time we lex an identifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196622 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Rewrite asan's stack frame layout.
First, most of the stack layout logic is moved into a separte file
to make it more testable and (potentially) useful for other projects.
Second, make the frames more compact by using adaptive redzones
(smaller for small objects, larger for large objects).
Third, try to minimized gaps due to large alignments (this is hypothetical since
today we don't see many stack vars aligned by more than 32).
The frames indeed become more compact, but I'll still need to run more benchmarks
before committing, but I am sking for review now to get early feedback.
This change will be accompanied by a trivial change in compiler-rt tests
to match the new frame sizes.
Reviewers: samsonov, dvyukov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2324
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196568 91177308-0d34-0410-b5e6-96231b3b80d8
The intended behaviour is to force vectorization on the presence
of the flag (either turn on or off), and to continue the behaviour
as expected in its absence. Tests were added to make sure the all
cases are covered in opt. No tests were added in other tools with
the assumption that they should use the PassManagerBuilder in the
same way.
This patch also removes the outdated -late-vectorize flag, which was
on by default and not helping much.
The pragma metadata is being attached to the same place as other loop
metadata, but nothing forbids one from attaching it to a function
(to enable #pragma optimize) or basic blocks (to hint the basic-block
vectorizers), etc. The logic should be the same all around.
Patches to Clang to produce the metadata will be produced after the
initial implementation is agreed upon and committed. Patches to other
vectorizers (such as SLP and BB) will be added once we're happy with
the pass manager changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196537 91177308-0d34-0410-b5e6-96231b3b80d8
This allows a target to use MI-Sched as an in-order scheduler that
will model strict resource conflicts without defining a processor
itinerary. Instead, the target can now use the new per-operand machine
model and define in-order resources with BufferSize=0. For example,
this would allow restricting the type of operations that can be formed
into a dispatch group. (Normally NumMicroOps is sufficient to enforce
dispatch groups).
If the intent is to model latency in in-order pipeline, as opposed to
resource conflicts, then a resource with BufferSize=1 should be
defined instead.
This feature is only casually tested as there are no in-tree targets
using it yet. However, Hal will be experimenting with POWER7.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196517 91177308-0d34-0410-b5e6-96231b3b80d8
getSymbolWithGlobalValueBase use is to create a name of a new symbol based
on the name of an existing GV. Assert that and then remove the last call
to pass true to isImplicitlyPrivate.
This gives the mangler API a 1:1 mapping from GV to names, which is what we
need to drop the mangler dependency on the target (and use an extended
datalayout instead).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196472 91177308-0d34-0410-b5e6-96231b3b80d8
This patch tries to avoid unrelated changes other than fixing a few
hyphen-related ambiguities and contractions in nearby lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196471 91177308-0d34-0410-b5e6-96231b3b80d8
Most people are using MSVC 2012, which lacks the <initializer_list>
header. MSVC 2013 shipped with that header, but it has not yet been
tested. If clang works with the 2013 header, then we can enable this by
checking the value of _MSC_VER.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196448 91177308-0d34-0410-b5e6-96231b3b80d8
ELF_Other_Weakref and ELF_Other_ThumbFunc seems to be LLVM
internal ELF symbol flags. These should not be emitted to
object file.
This commit defines ELF_STO_Shift for the target-defined
flags for st_other, and increase the value of
ELF_Other_Shift to 16.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196440 91177308-0d34-0410-b5e6-96231b3b80d8
We were previously not adding fast-math flags through CreateBinOp()
when it happened to be making a floating point binary operator. This
patch updates it to do so similarly to directly calling CreateF*().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196438 91177308-0d34-0410-b5e6-96231b3b80d8
ARM symbol variants are written with parens instead of @ like this:
.word __GLOBAL_I_a(target1)
This commit adds support for parsing these symbol variants in
expressions. We introduce a new flag to MCAsmInfo that indicates the
parser should use parens to parse the symbol variant. The expression
parser is modified to look for symbol variants using parens instead
of @ when the corresponding MCAsmInfo flag is true.
The MCAsmInfo parens flag is enabled only for ARM on ELF.
By adding this flag to MCAsmInfo, we are able to get rid of
redundant ARM-specific symbol variants and use the generic variants
instead (e.g. VK_GOT instead of VK_ARM_GOT). We use the new
UseParensForSymbolVariant attribute in MCAsmInfo to correctly print
the symbol variants for arm.
To achive this we need to keep a handle to the MCAsmInfo in the
MCSymbolRefExpr class that we can check when printing the symbol
variant.
Updated Tests:
Changed case of symbol variant to match the generic kind.
test/CodeGen/ARM/tls-models.ll
test/CodeGen/ARM/tls1.ll
test/CodeGen/ARM/tls2.ll
test/CodeGen/Thumb2/tls1.ll
test/CodeGen/Thumb2/tls2.ll
PR18080
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196424 91177308-0d34-0410-b5e6-96231b3b80d8
This currently breaks clang/test/CodeGen/code-coverage.c. The root cause
is that the newly introduced access to Funcs[j] is out of bounds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196365 91177308-0d34-0410-b5e6-96231b3b80d8
Added additional checks for the Identifier, CfgChecksum and Name for
each GCOVFunction. Also added function names in error messages.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196356 91177308-0d34-0410-b5e6-96231b3b80d8
This splits the file-scope read() function into readGCNO() and
readGCDA(). Also broke file format read into functions that first read
the file type, then check the version.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196353 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of asking the user to specify a single file to output coverage
info and defaulting to STDOUT, llvm-cov now creates files for each
source file with a naming system of: <source filename> + ".llcov".
This is what gcov does and although it can clutter the working directory
with numerous coverage files, it will be easier to hook the llvm-cov
output to tools which operate on this assumption (such as lcov).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196184 91177308-0d34-0410-b5e6-96231b3b80d8
This is useful for debugging issues in the BlockFrequency implementation
since one can easily visualize where probability mass and other errors
occur in the propagation.
This is the MI version of r194654.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196183 91177308-0d34-0410-b5e6-96231b3b80d8
Each line stores all the blocks that execute on that line, instead of
only storing the line counts previously accumulated. This provides more
information for each line, and will be useful for options in enabling
block and branch information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196177 91177308-0d34-0410-b5e6-96231b3b80d8
Added GCOVEdge which are simple structs owned by the GCOVFunction that
stores the source and destination GCOVBlocks, as well as the counts.
Changed GCOVBlocks so that it stores a vector of source GCOVEdges and a
vector of destination GCOVEdges, rather than just the block number.
Storing the block number was only useful for knowing the number of edges
and for debug info. Using a struct is useful for traversing the edges,
especially back edges which may be needed later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196175 91177308-0d34-0410-b5e6-96231b3b80d8
Add a helper function getDebugInfoVersionFromModule to return the debug info
version number for a module.
"Verifier/module-flags-1.ll" checks for verification errors.
It will seg fault when calling getDebugInfoVersionFromModule because of the
incorrect format for module flags in the testing case. We make
getModuleFlagsMetadata more robust by checking for error conditions.
PR17982
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196158 91177308-0d34-0410-b5e6-96231b3b80d8
When a block is unreachable, asking its dom tree descendants should
return the empty set. However, the computation of the descendants
was causing a segmentation fault because the dom tree node we get
from the basic block is initially NULL.
Fixed by adding a test for a valid dom tree node before we iterate.
The patch also adds some unit tests to the existing dom tree tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196099 91177308-0d34-0410-b5e6-96231b3b80d8
to be a bit more sensible. The public interface now is first followed by
the implementation details.
This also resolves a FIXME to make something private -- it was already
possible as the one special caller was already a friend.
No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196095 91177308-0d34-0410-b5e6-96231b3b80d8
target independent.
Most of the x86 specific stackmap/patchpoint handling was necessitated by the
use of the native address-mode format for frame index operands. PEI has now
been modified to treat stackmap/patchpoint similarly to DEBUG_INFO, allowing
us to use a simple, platform independent register/offset pair for frame
indexes on stackmap/patchpoints.
Notes:
- Folding is now platform independent and automatically supported.
- Emiting patchpoints with direct memory references now just involves calling
the TargetLoweringBase::emitPatchPoint utility method from the target's
XXXTargetLowering::EmitInstrWithCustomInserter method. (See
X86TargetLowering for an example).
- No more ugly platform-specific operand parsers.
This patch shouldn't change the generated output for X86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195944 91177308-0d34-0410-b5e6-96231b3b80d8
only user was an ancient SCC printing bit of the opt tool which really
should be walking the call graph the same way the CGSCC pass manager
does.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195800 91177308-0d34-0410-b5e6-96231b3b80d8
class name. I think we're no longer using any compilers with
sufficiently broken ICN for this use case, but I'll watch the bots and
introduce a typedef without a reserved name if any yell at me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195793 91177308-0d34-0410-b5e6-96231b3b80d8
doxygen comments, make existing comments doxygen comments etc.
Also, switch commented-out debug helpers to #if-0-ed out debug helpers.
No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195783 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds the counter-part to DominatorTree::getDescendants.
It also fixes a couple of comments I noticed out of date in the
DominatorTree class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195778 91177308-0d34-0410-b5e6-96231b3b80d8
happy with but GCC complains about. I'm assuming both compilers are
correct and these are optional in C++11 because I'm too tired to read
the standard. ;]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195748 91177308-0d34-0410-b5e6-96231b3b80d8
of the two analysis managers into a CRTP base class that can be shared
and re-used in building any analysis manager. This will in turn simplify
adding yet another analysis manager to the system.
The base class provides all of the interface sugar for the analysis
manager delegating the functionality back through DerivedT methods which
operate on simple pass IDs. It also provides the pass registration,
storage, and lookup system which is common across the various
formulations of analysis managers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195747 91177308-0d34-0410-b5e6-96231b3b80d8
CallGraph.
This makes the CallGraph a totally generic analysis object that is the
container for the graph data structure and the primary interface for
querying and manipulating it. The pass logic is separated into its own
class. For compatibility reasons, the pass provides wrapper methods for
most of the methods on CallGraph -- they all just forward.
This will allow the new pass manager infrastructure to provide its own
analysis pass that constructs the same CallGraph object and makes it
available. The idea is that in the new pass manager, the analysis pass's
'run' method returns a concrete analysis 'result'. Here, that result is
a 'CallGraph'. The 'run' method will typically do only minimal work,
deferring much of the work into the implementation of the result object
in order to be lazy about computing things, but when (like DomTree)
there is *some* up-front computation, the analysis does it prior to
handing the result back to the querying pass.
I know some of this is fairly ugly. I'm happy to change it around if
folks can suggest a cleaner interim state, but there is going to be some
amount of unavoidable ugliness during the transition period. The good
thing is that this is very limited and will naturally go away when the
old pass infrastructure goes away. It won't hang around to bother us
later.
Next up is the initial new-PM-style call graph analysis. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195722 91177308-0d34-0410-b5e6-96231b3b80d8
that lets the analysis and graph types be separate and the graph
computed from the analysis through some arbitrary user-supplied code.
This will allow a call graph to an independent entity from the pass
which creates it which is necessary for the new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195717 91177308-0d34-0410-b5e6-96231b3b80d8
changes to it. No functionality changed.
You may wonder why on earth touching this code is involved in the pass
manager work as indicated by my lovely '[PM]' tag? Let me tell you
a story.
<redacted>
Yea, it's too long of a story. Let us say that there are yaks, many of
them. I am busy shaving them as fast as I can.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195715 91177308-0d34-0410-b5e6-96231b3b80d8
A Direct stack map location records the address of frame index. This
address is itself the value that the runtime requested. This differs
from IndirectMemRefOp locations, which refer to a stack locations from
which the requested values must be loaded. Direct locations can
directly communicate the address if an alloca, while IndirectMemRefOp
handle register spills.
For example:
entry:
%a = alloca i64...
llvm.experimental.stackmap(i32 <ID>, i32 <shadowBytes>, i64* %a)
Since both the alloca and stackmap intrinsic are in the entry block,
and the intrinsic takes the address of the alloca, the runtime can
assume that LLVM will not substitute alloca with any intervening
value. This must be verified by the runtime by checking that the stack
map's location is a Direct location type. The runtime can then
determine the alloca's relative location on the stack immediately after
compilation, or at any time thereafter. This differs from Register and
Indirect locations, because the runtime can only read the values in
those locations when execution reaches the instruction address of the
stack map.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195712 91177308-0d34-0410-b5e6-96231b3b80d8
spacing around the '*' in pointer types. Will let me use clang-format on
subsequent changes without introducing any noise. No functionality
changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195708 91177308-0d34-0410-b5e6-96231b3b80d8
whitespace, and a couple of argument name fixes before I start hacking
on this code. No functionality changed here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195699 91177308-0d34-0410-b5e6-96231b3b80d8
This matches other empty() container functions in LLVM.
No actual usage problems discovered in this instance.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195562 91177308-0d34-0410-b5e6-96231b3b80d8
proxy. This lets a function pass query a module analysis manager.
However, the interface is const to indicate that only cached results can
be safely queried.
With this, I think the new pass manager is largely functionally complete
for modules and analyses. Still lots to test, and need to generalize to
SCCs and Loops, and need to build an adaptor layer to support the use of
existing Pass objects in the new managers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195538 91177308-0d34-0410-b5e6-96231b3b80d8
results.
This is the last piece of infrastructure needed to effectively support
querying *up* the analysis layers. The next step will be to introduce
a proxy which provides access to those layers with appropriate use of
const to direct queries to the safe interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195525 91177308-0d34-0410-b5e6-96231b3b80d8
one function's analyses are invalidated at a time. Also switch the
preservation of the proxy to *fully* preserve the lower (function)
analyses.
Combined, this gets both upward and downward analysis invalidation to
a point I'm happy with:
- A function pass invalidates its function analyses, and its parent's
module analyses.
- A module pass invalidates all of its functions' analyses including the
set of which functions are in the module.
- A function pass can preserve a module analysis pass.
- If all function passes preserve a module analysis pass, that
preservation persists. If any doesn't the module analysis is
invalidated.
- A module pass can opt into managing *all* function analysis
invalidation itself or *none*.
- The conservative default is none, and the proxy takes the maximally
conservative approach that works even if the set of functions has
changed.
- If a module pass opts into managing function analysis invalidation it
has to propagate the invalidation itself, the proxy just does nothing.
The only thing really missing is a way to query for a cached analysis or
nothing at all. With this, function passes can more safely request
a cached module analysis pass without fear of it accidentally running
part way through.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195519 91177308-0d34-0410-b5e6-96231b3b80d8
We can share the implementation between StripSymbols and dropping debug info
for metadata versions that do not match.
Also update the comments to match the implementation. A follow-on patch will
drop the "Debug Info Version" module flag in StripDebugInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195505 91177308-0d34-0410-b5e6-96231b3b80d8
Improvements over r195317:
- Set/restore EnableFastISel flag instead of just running FastISel within
SelectAllBasicBlocks; the flag is checked in various places, and
FastISel won't run properly if those places don't do the right thing.
- Test looks for normal ISel versus FastISel behavior, and not
something more subtle that doesn't work everywhere.
Based on work by Andrea Di Biagio.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195491 91177308-0d34-0410-b5e6-96231b3b80d8
run methods of the analysis passes.
Also generalizes and re-uses the SFINAE for transformation passes so
that users can write an analysis pass and only accept an analysis
manager if that is useful to their pass.
This completes the plumbing to make an analysis manager available
through every pass's run method if desired so that passes no longer need
to be constructed around them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195451 91177308-0d34-0410-b5e6-96231b3b80d8
several templates. The previous order didn't make any sense as it
separated 'IRUnitT' and 'AnalysisManagerT', the types which are
essentially paired and passed along together throughout the layers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195450 91177308-0d34-0410-b5e6-96231b3b80d8
Since the analysis managers were split into explicit function and module
analysis managers, it is now completely trivial to specify this when
building up the concept and model types explicitly, and it is impossible
to end up with a type error at run time. We instantiate a template when
registering a pass that will enforce the requirement at a type-system
level, and we produce a dynamic error on all the other query paths to
the analysis manager if the pass in question isn't registered.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195447 91177308-0d34-0410-b5e6-96231b3b80d8
This is supposed to be the whole type of the IR unit, and so we
shouldn't pass a pointer to it but rather the value itself. In turn, we
need to provide a 'Module *' as that type argument (for example). This
will become more relevant with SCCs or other units which may not be
passed as a pointer type, but also brings consistency with the
transformation pass templates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195445 91177308-0d34-0410-b5e6-96231b3b80d8
We already have a method for returning one loop latch but for some
reason no one has committed one for returning loop latches in the case
where there are multiple latches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195410 91177308-0d34-0410-b5e6-96231b3b80d8
<def,dead> ones.
Add an assertion to make sure we catch this in the future.
Fixes <rdar://problem/15464559>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195401 91177308-0d34-0410-b5e6-96231b3b80d8
rather than the constructors of passes.
This simplifies the APIs of passes significantly and removes an error
prone pattern where the *same* manager had to be given to every
different layer. With the new API the analysis managers themselves will
have to be cross connected with proxy analyses that allow a pass at one
layer to query for the analysis manager of another layer. The proxy will
both expose a handle to the other layer's manager and it will provide
the invalidation hooks to ensure things remain consistent across layers.
Finally, the outer-most analysis manager has to be passed to the run
method of the outer-most pass manager. The rest of the propagation is
automatic.
I've used SFINAE again to allow passes to completely disregard the
analysis manager if they don't need or want to care. This helps keep
simple things simple for users of the new pass manager.
Also, the system specifically supports passing a null pointer into the
outer-most run method if your pass pipeline neither needs nor wants to
deal with analyses. I find this of dubious utility as while some
*passes* don't care about analysis, I'm not sure there are any
real-world users of the pass manager itself that need to avoid even
creating an analysis manager. But it is easy to support, so there we go.
Finally I renamed the module proxy for the function analysis manager to
the more verbose but less confusing name of
FunctionAnalysisManagerModuleProxy. I hate this name, but I have no idea
what else to name these things. I'm expecting in the fullness of time to
potentially have the complete cross product of types at the proxy layer:
{Module,SCC,Function,Loop,Region}AnalysisManager{Module,SCC,Function,Loop,Region}Proxy
(except for XAnalysisManagerXProxy which doesn't make any sense)
This should make it somewhat easier to do the next phases which is to
build the upward proxy and get its invalidation correct, as well as to
make the invalidation within the Module -> Function mapping pass be more
fine grained so as to invalidate fewer fuction analyses.
After all of the proxy analyses are done and the invalidation working,
I'll finally be able to start working on the next two fun fronts: how to
adapt an existing pass to work in both the legacy pass world and the new
one, and building the SCC, Loop, and Region counterparts. Fun times!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195400 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is a rewrite of the original patch commited in r194542. Instead of
relying on the type legalizer to do the splitting for us, we now peform the
splitting ourselves in the DAG combiner. This is necessary for the case where
the vector mask is a legal type after promotion and still wouldn't require
splitting.
Patch by: Juergen Ributzka
NOTE: This is a candidate for the 3.4 branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195397 91177308-0d34-0410-b5e6-96231b3b80d8
It broke, at least, i686 target. It is reproducible with "llc -mtriple=i686-unknown".
FYI, it didn't appear to add either "-O0" or "-fast-isel".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195339 91177308-0d34-0410-b5e6-96231b3b80d8
it is completely optional, and sink the logic for handling the preserved
analysis set into it.
This allows us to implement the delegation logic desired in the proxy
module analysis for the function analysis manager where if the proxy
itself is preserved we assume the set of functions hasn't changed and we
do a fine grained invalidation by walking the functions in the module
and running the invalidate for them all at the manager level and letting
it try to invalidate any passes.
This in turn makes it blindingly obvious why we should hoist the
invalidate trait and have two collections of results. That allows
handling invalidation for almost all analyses without indirect calls and
it allows short circuiting when the preserved set is all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195338 91177308-0d34-0410-b5e6-96231b3b80d8
type and detect whether or not it provides an 'invalidate' member the
analysis manager should use.
This lets the overwhelming common case of *not* caring about custom
behavior when an analysis is invalidated be the the obvious default
behavior with no code written by the author of an analysis. Only when
they write code specifically to handle invalidation does it get used.
Both cases are actually covered by tests here. The test analysis uses
the default behavior, and the proxy module analysis actually has custom
behavior on invalidation that is firing correctly. (In fact, this is the
analysis which was the primary motivation for having custom invalidation
behavior in the first place.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195332 91177308-0d34-0410-b5e6-96231b3b80d8