Note, isUndef marker must be placed even on implicit_def def operand or else the scavenger will not ignore it. This is necessary because -O0 path does not use liveintervalanalysis, it treats implicit_def just like any other def.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74601 91177308-0d34-0410-b5e6-96231b3b80d8
- This more or less amounts to a revert of r65379. I'm curious to know what
happened that caused this variable to become unused.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74579 91177308-0d34-0410-b5e6-96231b3b80d8
have the alignment be calculated up front, and have the back-ends obey whatever
alignment is decided upon.
This allows for future work that would allow for precise no-op placement and the
like.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74564 91177308-0d34-0410-b5e6-96231b3b80d8
The register allocator, when it allocates a register to a virtual register defined by an implicit_def, can allocate any physical register without worrying about overlapping live ranges. It should mark all of operands of the said virtual register so later passes will do the right thing.
This is not the best solution. But it should be a lot less fragile to having the scavenger try to track what is defined by implicit_def.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74518 91177308-0d34-0410-b5e6-96231b3b80d8
the SelectionDAG::getGlobalAddress function properly looks through
aliases to determine thread-localness, but then passes the GV* down
to GlobalAddressSDNode::GlobalAddressSDNode which does not. Instead
of passing down isTarget, just pass down the predetermined node
opcode. This fixes some assertions with out of tree changes I'm
working on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74325 91177308-0d34-0410-b5e6-96231b3b80d8
to be shared, but how/where to privatize it is not immediately clear to me.
If any SelectionDAG experts see a better solution, please share!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74180 91177308-0d34-0410-b5e6-96231b3b80d8
This change doubles the allowable value for MVT::LAST_VALUETYPE. It does
this by doing several things.
1. Introduces MVT::MAX_ALLOWED_LAST_VALUETYPE which in this change has a
value of 64. This value contains the current maximum for the
MVT::LAST_VALUETYPE.
2. Instead of checking "MVT::LAST_VALUETYPE <= 32", all of those uses
now become "MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_LAST_VALUETYPE"
3. Changes the dimension of the ValueTypeActions from 2 elements to four
elements and adds comments ahead of the declaration indicating the it is
"(MVT::MAX_ALLOWED_LAST_VALUETYPE/32) * 2". This at least lets us find
what is affected if and when MVT::MAX_ALLOWED_LAST_VALUETYPE gets
changed.
4. Adds initializers for the new elements of ValueTypeActions.
This does NOT add any types in MVT. That would be done separately.
This doubles the size of ValueTypeActions from 64 bits to 128 bits and
gives us the freedom to add more types for AVX.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74110 91177308-0d34-0410-b5e6-96231b3b80d8
a bunch of code from all the targets, and eliminates nondeterministic
ordering of directives being emitted in the output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74096 91177308-0d34-0410-b5e6-96231b3b80d8
Only pad when the section size > 0 and move the code that deals
with globals initializers to a place we know for sure the global
is initialized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73944 91177308-0d34-0410-b5e6-96231b3b80d8
Support for .text relocations, implementing TargetELFWriter overloaded methods for x86/x86_64.
Use a map to track global values to their symbol table indexes
Code cleanup and small fixes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73894 91177308-0d34-0410-b5e6-96231b3b80d8
- Register allocator should resolve the second part of the hint (register number) before passing it to the target since it knows virtual register to physical register mapping.
- More fixes to get ARM load / store double word working.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73671 91177308-0d34-0410-b5e6-96231b3b80d8
TurnCopyIntoImpDef turns a copy into implicit_def and remove the val# defined by it. This causes an scavenger assertion later if the def reaches other blocks. Disable the transformation if the value live interval extends beyond its def block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73478 91177308-0d34-0410-b5e6-96231b3b80d8
support for x86, and UMULO/SMULO for many architectures, including PPC
(PR4201), ARM, and Cell. The resulting expansion isn't perfect, but it's
not bad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73477 91177308-0d34-0410-b5e6-96231b3b80d8
incomming chain of the RETURN node. The incomming chain must
be the outgoing chain of the CALL node. This causes the
backend to identify tail calls that are not tail calls. This
patch fixes this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73387 91177308-0d34-0410-b5e6-96231b3b80d8
- Change register allocation hint to a pair of unsigned integers. The hint type is zero (which means prefer the register specified as second part of the pair) or entirely target dependent.
- Allow targets to specify alternative register allocation orders based on allocation hint.
Part 2.
- Use the register allocation hint system to implement more aggressive load / store multiple formation.
- Aggressively form LDRD / STRD. These are formed *before* register allocation. It has to be done this way to shorten live interval of base and offset registers. e.g.
v1025 = LDR v1024, 0
v1026 = LDR v1024, 0
=>
v1025,v1026 = LDRD v1024, 0
If this transformation isn't done before allocation, v1024 will overlap v1025 which means it more difficult to allocate a register pair.
- Even with the register allocation hint, it may not be possible to get the desired allocation. In that case, the post-allocation load / store multiple pass must fix the ldrd / strd instructions. They can either become ldm / stm instructions or back to a pair of ldr / str instructions.
This is work in progress, not yet enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73381 91177308-0d34-0410-b5e6-96231b3b80d8
consecutive addresses togther. This makes it easier for the post-allocation pass
to form ldm / stm.
This is step 1. We are still missing a lot of ldm / stm opportunities because
of register allocation are not done in the desired order. More enhancements
coming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73291 91177308-0d34-0410-b5e6-96231b3b80d8
Emission for globals, using the correct data sections
Function alignment can be computed for each target using TargetELFWriterInfo
Some small fixes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73201 91177308-0d34-0410-b5e6-96231b3b80d8
on x86 to handle more cases. Fix a bug in said code that would cause it
to read past the end of an object. Rewrite the code in
SelectionDAGLegalize::ExpandBUILD_VECTOR to be a bit more general.
Remove PerformBuildVectorCombine, which is no longer necessary with
these changes. In addition to simplifying the code, with this change,
we can now catch a few more cases of consecutive loads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73012 91177308-0d34-0410-b5e6-96231b3b80d8
integer type to be consistent with normal operation legalization. No visible
change because nothing is actually using this at the moment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72980 91177308-0d34-0410-b5e6-96231b3b80d8
Update code generator to use this attribute and remove NoImplicitFloat target option.
Update llc to set this attribute when -no-implicit-float command line option is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72959 91177308-0d34-0410-b5e6-96231b3b80d8
build vectors with i64 elements will only appear on 32b x86 before legalize.
Since vector widening occurs during legalize, and produces i64 build_vector
elements, the dag combiner is never run on these before legalize splits them
into 32b elements.
Teach the build_vector dag combine in x86 back end to recognize consecutive
loads producing the low part of the vector.
Convert the two uses of TLI's consecutive load recognizer to pass LoadSDNodes
since that was required implicitly.
Add a testcase for the transform.
Old:
subl $28, %esp
movl 32(%esp), %eax
movl 4(%eax), %ecx
movl %ecx, 4(%esp)
movl (%eax), %eax
movl %eax, (%esp)
movaps (%esp), %xmm0
pmovzxwd %xmm0, %xmm0
movl 36(%esp), %eax
movaps %xmm0, (%eax)
addl $28, %esp
ret
New:
movl 4(%esp), %eax
pmovzxwd (%eax), %xmm0
movl 8(%esp), %eax
movaps %xmm0, (%eax)
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72957 91177308-0d34-0410-b5e6-96231b3b80d8