This gets us closer to being able to remove LiveVariables entirely which is where dead instructions are currently tagged as such.
Reviewed by Jakob Olesen
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210132 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210062 91177308-0d34-0410-b5e6-96231b3b80d8
This was previously committed in r209680 and reverted in r209683 after
it caused sanitizer builds to crash.
The issue seems to be that the DebugLoc associated with dbg.value IR
intrinsics isn't necessarily accurate. Instead, we duplicate the
DIVariables and add an InlinedAt field to them to record their
location.
We were using this InlinedAt field to compute the LexicalScope for the
variable, but not using it in the abstract DbgVariable construction and
mapping. This resulted in a formal parameter to the current concrete
function, correctly having no InlinedAt information, but incorrectly
having a DebugLoc that described an inlined location within the
function... thus an abstract DbgVariable was created for the variable,
but its DIE was never constructed (since the LexicalScope had no such
variable). This DbgVariable was silently ignored (by testing for a
non-null DIE on the abstract DbgVariable).
So, fix this by using the right scoping information when constructing
abstract DbgVariables.
In the long run, I suspect we want to undo the work that added this
second kind of location tracking and fix the places where the DebugLoc
propagation on the dbg.value intrinsic fails. This will shrink debug
info (by not duplicating DIVariables), make it more efficient (by not
having to construct new DIVariable metadata nodes to try to map back to
a single variable), and benefit all instructions.
But perhaps there are insurmountable issues with DebugLoc quality that
I'm unaware of... I just don't know how we can't /just keep the DebugLoc
from the dbg.declare to the dbg.values and never get this wrong/.
Some history context:
http://llvm.org/viewvc/llvm-project?view=revision&revision=135629http://llvm.org/viewvc/llvm-project?view=revision&revision=137253
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209984 91177308-0d34-0410-b5e6-96231b3b80d8
DAG cycle detection is only enabled with ENABLE_EXPENSIVE_CHECKS. However we
can run it just before we would crash in order to provide more informative
diagnostics.
Now in addition to the "Overran sorted position" message we also get the Node
printed if a cycle was detected.
Tested by building several configs: Debug+Assert, Debug+Assert+Check (this is
ENABLE_EXPENSIVE_CHECKS), Release+Assert and Release. Also tried that the
AssignTopologicalOrder assert produces the expected results.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209977 91177308-0d34-0410-b5e6-96231b3b80d8
Pass the DAG down to checkForCycles from all callers where we have it. This
allows target-specific nodes to be printed properly.
Also print some missing newlines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209976 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the backend how to simplify/canonicalize dag node
sequences normally introduced by the backend when promoting certain dag nodes
with illegal vector type.
This patch adds two new combine rules:
1) fold (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
(shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
2) fold (BINOP (shuffle (A, Undef, <Mask>)), (shuffle (B, Undef, <Mask>))) ->
(shuffle (BINOP A, B), Undef, <Mask>).
Both rules are only triggered on the type-legalized DAG.
In particular, rule 1. is a target specific combine rule that attempts
to sink a bitconvert into the operands of a binary operation.
Rule 2. is a target independet rule that attempts to move a shuffle
immediately after a binary operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209930 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If both vector args to vselect are concat_vectors and the condition is
constant and picks half a vector from each argument, convert the vselect
into a concat_vectors.
Added a test.
The ConvertSelectToConcatVector is assuming it doesn't get vselects with
arguments of, for example, <undef, undef, true, true>. Those get taken
care of in the checks above its call.
Reviewers: nadav, delena, grosbach, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3916
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209929 91177308-0d34-0410-b5e6-96231b3b80d8
For MIPS, we have to encode the personality routine with
an indirect pointer to absptr; otherwise, some link warning
warning will be raised, and the program might crash in some
early MIPS Android device.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209907 91177308-0d34-0410-b5e6-96231b3b80d8
Unordered is strictly weaker than monotonic, so if the latter doesn't have any
barriers then the former certainly shouldn't.
rdar://problem/16548260
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209901 91177308-0d34-0410-b5e6-96231b3b80d8
The C and C++ semantics for compare_exchange require it to return a bool
indicating success. This gets mapped to LLVM IR which follows each cmpxchg with
an icmp of the value loaded against the desired value.
When lowered to ldxr/stxr loops, this extra comparison is redundant: its
results are implicit in the control-flow of the function.
This commit makes two changes: it replaces that icmp with appropriate PHI
nodes, and then makes sure earlyCSE is called after expansion to actually make
use of the opportunities revealed.
I've also added -{arm,aarch64}-enable-atomic-tidy options, so that
existing fragile tests aren't perturbed too much by the change. Many
of them either rely on undef/unreachable too pervasively to be
restored to something well-defined (particularly while making sure
they test the same obscure assert from many years ago), or depend on a
particular CFG shape, which is disrupted by SimplifyCFG.
rdar://problem/16227836
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209883 91177308-0d34-0410-b5e6-96231b3b80d8
never used again and updating the abstract variable for each inlined
instance of it was questionable in the first place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209829 91177308-0d34-0410-b5e6-96231b3b80d8
An address only use of an extract element of a load can be simplified to a
load. Without this the result of the extract element is spilled to the
stack so that an address is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209788 91177308-0d34-0410-b5e6-96231b3b80d8
No test because no in-tree targets change the bitwidth of the
setcc type depending on the bitwidth of the compared type.
Patch by Ke Bai
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209771 91177308-0d34-0410-b5e6-96231b3b80d8
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209759 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r208640 (I've just XFAILed the test) because it broke ppc64/Linux
self-hosting. Because nearly every regression test triggers a segfault, I hope
this will be easy to fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209747 91177308-0d34-0410-b5e6-96231b3b80d8
Use more straightforward way to represent the set of instruction
ranges where the location of a user variable is defined - vector of pairs
of instructions (defining start/end of each range),
instead of a flattened vector of instructions where some instructions
are supposed to start the range, and the rest are supposed to "clobber" it.
Simplify the code which generates actual .debug_loc entries.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209698 91177308-0d34-0410-b5e6-96231b3b80d8
Current implementation of calculateDbgValueHistory already creates the
keys in the expected order (user variables are listed in order of appearance),
and should do so later by contract.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209690 91177308-0d34-0410-b5e6-96231b3b80d8
I'm not sure exactly where/how we end up with an abstract DbgVariable
with a null DIE, but we do... looking into it & will add a test and/or
fix when I figure it out.
Currently shows up in selfhost or compiler-rt builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209683 91177308-0d34-0410-b5e6-96231b3b80d8
Originally committed in r207717, I clearly didn't look very closely at
the code to understand how existing things were working...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209680 91177308-0d34-0410-b5e6-96231b3b80d8
After much puppetry, here's the major piece of the work to ensure that
even when a concrete definition preceeds all inline definitions, an
abstract definition is still created and referenced from both concrete
and inline definitions.
Variables are still broken in this case (see comment in
dbg-value-inlined-parameter.ll test case) and will be addressed in
follow up work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209677 91177308-0d34-0410-b5e6-96231b3b80d8
A further step to correctly emitting concrete out of line definitions
preceeding inlined instances of the same program.
To do this, emission of subprograms must be delayed until required since
we don't know which (abstract only (if there's no out of line
definition), concrete only (if there are no inlined instances), or both)
DIEs are required at the start of the module.
To reduce the test churn in the following commit that actually fixes the
bug, this commit introduces the lazy DIE construction and cleans up test
cases that are impacted by the changes in the resulting DIE ordering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209675 91177308-0d34-0410-b5e6-96231b3b80d8
This is a precursor to fixing inlined debug info where the concrete,
out-of-line definition may preceed any inlined usage. To cope with this,
the attributes that may appear on the concrete definition or the
abstract definition are delayed until the end of the module. Then, if an
abstract definition was created, it is referenced (and no other
attributes are added to the out-of-line definition), otherwise the
attributes are added directly to the out-of-line definition.
In a couple of cases this causes not just reordering of attributes, but
reordering of types. When the creation of the attribute is delayed, if
that creation would create a type (such as for a DW_AT_type attribute)
then other top level DIEs may've been constructed during the delay,
causing the referenced type to be created and added after those
intervening DIEs. In the extreme case, in cross-cu-inlining.ll, this
actually causes the DW_TAG_basic_type for "int" to move from one CU to
another.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209674 91177308-0d34-0410-b5e6-96231b3b80d8
Cortex-M4 only has single-precision floating point support, so any LLVM
"double" type will have been split into 2 i32s by now. Fortunately, the
consecutive-register framework turns out to be precisely what's needed to
reconstruct the double and follow AAPCS-VFP correctly!
rdar://problem/17012966
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209650 91177308-0d34-0410-b5e6-96231b3b80d8
Post commit review feedback from Manman called this out, but it looks
like it slipped through the cracks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209611 91177308-0d34-0410-b5e6-96231b3b80d8
Seems my previous fix was insufficient - we were still not adding the
inlined function to the abstract scope list. Which meant it wasn't
flagged as inline, didn't have nested lexical scopes in the abstract
definition, and didn't have abstract variables - so the inlined variable
didn't reference an abstract variable, instead being described
completely inline.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209602 91177308-0d34-0410-b5e6-96231b3b80d8
This makes front/back symmetric with begin/end, avoiding some confusion.
Added instr_front/instr_back for the old behavior, corresponding to
instr_begin/instr_end. Audited all three in-tree users of back(), all
of them look like they don't want to look inside bundles.
Fixes an assertion (PR19815) when generating debug info on mips, where a
delay slot was bundled at the end of a branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209580 91177308-0d34-0410-b5e6-96231b3b80d8
This seems like a simple cleanup/improved consistency, but also helps
lay the foundation to fix the bug mentioned in the test case: concrete
definitions preceeding any inlined usage aren't properly split into
concrete + abstract (because they're not known to need it until it's too
late).
Once we start deferring this choice until later, we won't have the
choice to put concrete definitions for inlined subroutines in a
different scope from concrete definitions for non-inlined subroutines
(since we won't know at time-of-construction which one it'll be). This
change brings those two cases into alignment ahead of that future
chaneg/fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209547 91177308-0d34-0410-b5e6-96231b3b80d8
It's not really a "ScopeDIE", as such - it's the abstract function
definition's DIE. And we usually use "SP" for subprograms, rather than
"Sub".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209499 91177308-0d34-0410-b5e6-96231b3b80d8
constructSubprogramDIE was already called for every subprogram in every
CU when the module was started - there's no need to call it again at
module finalization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209372 91177308-0d34-0410-b5e6-96231b3b80d8
a subtarget hook to enable. Unconditionally add to the pass pipeline
for targets that might want to use it. No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209340 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r208930, r208933, and r208975.
It seems not all fission consumers are ready to handle this behavior.
Reverting until tools are brought up to spec.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209338 91177308-0d34-0410-b5e6-96231b3b80d8
Committed in r209178 then reverted in r209251 due to LTO breakage,
here's a proper fix for the case of the missing subprogram DIE. The DIEs
were there, just in other compile units. Using the SPMap we can find the
right compile unit to search for and produce cross-unit references to
describe this kind of inlining.
One existing test case needed to be updated because it had a function
that wasn't in the CU's subprogram list, so it didn't appear in the
SPMap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209335 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r209178.
This seems to be asserting in an LTO build on some internal Apple
buildbots. No upstream reproduction (and I don't have an LLVM-aware gold
built right now to reproduce it personally) but it's a small patch & the
failure's semi-plausible so I'm going to revert first while I try to
reproduce this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209251 91177308-0d34-0410-b5e6-96231b3b80d8
Undecided whether this should include a test case - SROA produces bad
dbg.value metadata describing a value for a reference that is actually
the value of the thing the reference refers to. For now, loosening the
assert lets this not assert, but it's still bogus/wrong output...
If someone wants to tell me to add a test, I'm willing/able, just
undecided. Hopefully we'll get SROA fixed soon & we can tighten up this
assertion again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209240 91177308-0d34-0410-b5e6-96231b3b80d8
This change preserves the original algorithm of generating history
for user variables, but makes it more clear.
High-level description of algorithm:
Scan all the machine basic blocks and machine instructions in the order
they are emitted to the object file. Do the following:
1) If we see a DBG_VALUE instruction, add it to the history of the
corresponding user variable. Keep track of all user variables, whose
locations are described by a register.
2) If we see a regular instruction, look at all the registers it clobbers,
and terminate the location range for all variables described by these registers.
3) At the end of the basic block, terminate location ranges for all
user variables described by some register.
Although this change shouldn't be user-visible (the contents of .debug_loc section
should be the same), it changes some internal assumptions about the set
of instructions used to track the variable locations. Watching the bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209225 91177308-0d34-0410-b5e6-96231b3b80d8
In refactoring DwarfUnit::isUnsignedDIType I restricted it to only work
on values with signedness (unsigned or signed), asserting on anything
else (which did uncover some bugs). But it turns out that we do need to
emit constants of signless data, such as pointer constants - only null
pointer constants are known to need this so far, but it's conceivable
that there might be non-null pointer constants at some point (hardcoded
address offsets for device drivers?).
This patch just uses 'unsigned' for signless data such as pointer
constants. Arguably we could use signless representations
(DW_FORM_dataN) instead, allowing a trinary result from isUnsignedDIType
(signed, unsigned, signless), but this seems reasonable for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209223 91177308-0d34-0410-b5e6-96231b3b80d8
This workaround (presumably for ancient GDB) doesn't appear to be
required (GDB 7.5 seems to tolerate function definition DIEs in
namespace scope just fine).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209189 91177308-0d34-0410-b5e6-96231b3b80d8
Since we visit the whole list of subprograms for each CU at module
start, this is clearly true - don't test for the case, just assert it.
A few old test cases seemed to have incomplete subprogram lists, but any
attempt to reproduce them shows full subprogram lists that even include
entities that have been completely inlined and the out of line
definition removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209178 91177308-0d34-0410-b5e6-96231b3b80d8
When I refactored this in r208636 I accidentally caused this to be added
multiple times to each abstract subprogram (not accounting for the
deduplicating effect of the InlinedSubprogramDIEs set).
This got better in r208798 when the abstract definitions got the
attribute added to them at construction time, but still had the
redundant copies introduced in r208636.
This commit removes those excess DW_AT_inlines and relies solely on the
insertion in r208798.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209166 91177308-0d34-0410-b5e6-96231b3b80d8
The check in DwarfDebug::constructScopeDIE was meant to consider inlined
subroutines as any non-top-level scope that was a subprogram. Instead of
checking "not top level scope" it was checking if the /subprogram's/
scope was non-top-level.
Fix this and beef up a test case to demonstrate some of the missing
inlined_subroutines are no longer missing.
In the course of fixing this I also found that r208748 (with this fix)
found one /extra/ inlined_subroutine in concrete_out_of_line.ll due to
two inlined_subroutines having the same inlinedAt location. The previous
implementation was collapsing these into a single inlined subroutine.
I'm not sure what the original code was that created this .ll file so
I'm not sure if this actually happens in practice today. Since we
deliberately include column information to disambiguate two calls on the
same line, that may've addressed this bug in the frontend, but it's good
to know that workaround isn't necessary for this particular case
anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209165 91177308-0d34-0410-b5e6-96231b3b80d8
- On ARM/ARM64 we get a vrev because the shuffle matching code is really smart. We still unroll anything that's not v4i32 though.
- On X86 we get a pshufb with SSSE3. Required more cleverness in isShuffleMaskLegal.
- On PPC we get a vperm for v8i16 and v4i32. v2i64 is unrolled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209123 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly a mechanical change changing all the call sites to the newer
chained-function construction pattern. This removes the horrible 15-parameter
constructor for the CallLoweringInfo in favour of setting properties of the call
via chained functions. No functional change beyond the removal of the old
constructors are intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209082 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary step to help ease the construction of CallLoweringInfo.
Changing the construction to a chained function pattern requires that the
parameter be nullable. However, rather than copying the vector, save a pointer
rather than the reference to permit a late binding of the arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209080 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to put dynamic initializers for weak data into the same
comdat group as the data being initialized. This is necessary for MSVC
ABI compatibility. Once we have comdats for guard variables, we can use
the combination to help GlobalOpt fire more often for weak data with
guarded initialization on other platforms.
Reviewers: nlewycky
Differential Revision: http://reviews.llvm.org/D3499
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209015 91177308-0d34-0410-b5e6-96231b3b80d8
I'm not sure this is how it'll be going forward (I'd rather prefer the
definition to be in the main SP mapping, for various reasons) but this
helps me understand how it is today.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209009 91177308-0d34-0410-b5e6-96231b3b80d8
DIBuilder maintains this invariant and the current DwarfDebug code could
end up doing weird things if it contained declarations (such as putting
the definition DIE inside a CU that contained the declaration - this
doesn't seem like a good idea, so rather than adding logic to handle
this case we'll just ban in for now & cross that bridge if we come to
it later).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209004 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r208934.
The patch depends on aliases to GEPs with non zero offsets. That is not
supported and fairly broken.
The good news is that GlobalAlias is being redesigned and will have support
for offsets, so this patch should be a nice match for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208978 91177308-0d34-0410-b5e6-96231b3b80d8
This commit implements two command line switches -global-merge-on-external
and -global-merge-aligned, and both of them are false by default, so this
optimization is disabled by default for all targets.
For ARM64, some back-end behaviors need to be tuned to get this optimization
further enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208934 91177308-0d34-0410-b5e6-96231b3b80d8
Since type units in the dwo file are handled by a debug aware tool, they
don't need to leverage the ELF comdat grouping to implement
deduplication. Avoid creating all the .group sections for these as a
space optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208930 91177308-0d34-0410-b5e6-96231b3b80d8
Abstract variables should never have/use locations. In this case the
data wasn't used, so no functional change intended here, just
simplification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208820 91177308-0d34-0410-b5e6-96231b3b80d8
Many old tests using prior schemas still had some brokenness here (both
indirect arrays and arrays with single bogus elements). Fixed those up
so they don't hit the new assertions.
Also reduced nesting in some places, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208817 91177308-0d34-0410-b5e6-96231b3b80d8
This is just unneccessary - we only create abstract definitions when
we're inlining anyway, so there's no reason to delay this to see if
we're going to inline anything.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208798 91177308-0d34-0410-b5e6-96231b3b80d8
If the function has the landingpad instruction, then the
handlerdata should be emitted even if the function has
nouwnind attribute. Otherwise, following code will not
work:
void test1() noexcept {
try {
throw_exception();
} catch (...) {
log_unexpected_exception();
}
}
Since the cantunwind was incorrectly emitted and the
LSDA is not available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208791 91177308-0d34-0410-b5e6-96231b3b80d8
This was reverted in r208642 due to regressions surrounding file changes
within lexical scopes causing inlining information to be lost.
The issue was in LexicalScopes::getOrCreateInlinedScope, where I was
previously testing "isLexicalBlock" which is false for
"DILexicalBlockFile" (a scope used to represent changes in the current
file name) and assuming it was then a function (breaking out of the
inlined scope path and reaching for the parent non-inlined scopes). By
inverting the condition and testing for "isSubprogram" the correct
behavior is attained.
(also found some weirdness in Clang, see r208742 when reducing this test
case - the resulting test case doesn't apply with the Clang fix, but
I've added a more realistic test case to inline-scopes.ll which does
reproduce the issue and demonstrate the fix)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208748 91177308-0d34-0410-b5e6-96231b3b80d8
This allows code to statically accept a Function or a GlobalVariable, but
not an alias. This is already a cleanup by itself IMHO, but the main
reason for it is that it gives a lot more confidence that the refactoring to fix
the design of GlobalAlias is correct. That will be a followup patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208716 91177308-0d34-0410-b5e6-96231b3b80d8
compared to 'AddrMode.BaseReg'. In the case that 'AddrMode.BaseReg' is
nullptr, 'Result' will also be nullptr, so the cast causes an assertion. We
should use dyn_cast_or_null here to check 'Result' is not null and it is an
instruction.
Bug found by Mats Petersson, and I reduced his IR to get a test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208705 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r208506.
Some inlined subroutine scopes appear to be missing with this change.
Reverting while I investigate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208642 91177308-0d34-0410-b5e6-96231b3b80d8
The problem occurs when a non-i1 setcc is inverted. For example 'i8 = setcc' will get 'xor 0xff' to invert this. This is clearly wrong when the boolean contents are ZeroOrOne.
This patch introduces getLogicalNOT and updates SetCC legalisation to use it.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208641 91177308-0d34-0410-b5e6-96231b3b80d8
Right now the load may not get DCE'd because of the side-effect of updating
the base pointer.
This can happen if we lower a read-modify-write of an illegal larger type
(e.g. i48) such that the modification only affects one of the subparts (the
lower i32 part but not the higher i16 part). See the testcase.
In order to spot the dead load we need to revisit it when SimplifyDemandedBits
decided that the value of the load is masked off. This is the
CommitTargetLoweringOpt piece.
I checked compile time with ARM64 by sending SPEC bitcode files through llc.
No measurable change.
Fixes <rdar://problem/16031651>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208640 91177308-0d34-0410-b5e6-96231b3b80d8
One test case had to be updated as it still had the extra indirection
for the variable list - removing the extra indirection got it back to
passing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208608 91177308-0d34-0410-b5e6-96231b3b80d8
We must validate the value type in TLI::getRegisterByName, because if we
don't and the wrong type was used with the IR intrinsic, then we'll assert
(because we won't be able to find a valid register class with which to
construct the requested copy operation). For PPC64, additionally, the type
information is necessary to decide between the 64-bit register and the 32-bit
subregister.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208508 91177308-0d34-0410-b5e6-96231b3b80d8
Filed as PR19712, LLVM fails to detect the right type of an enum
constant when a frontend does not provide an underlying type for the
enumeration type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208502 91177308-0d34-0410-b5e6-96231b3b80d8
And the winner by a nose is isUnsignedDIType, for no particular reason.
These two functions were just complements of each other and used in very
related code, so refactor callers to just use one of them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208500 91177308-0d34-0410-b5e6-96231b3b80d8
Doesn't seem a good reason to duplicate this code (it was more literally
duplicated prior to r208494, and while the dataN code /does/ actually
fire in this case, it doesn't seem necessary (and the DWARF standard
recommends using udata/sdata pervasively instead of dataN, so as to
indicate signedness of the values))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208495 91177308-0d34-0410-b5e6-96231b3b80d8
This code looks to have become dead at some time in the past. I tried to
reproduce cases where LLVM would emit constants with dataN, but could
not. Upon inspection it seems the code doesn't do that anymore - the
only time a size is provided by isTypeSigned is when the type is signed,
and in those cases we use sdata. dataN is only used for unsigned types
and isTypeSigned doesn't provide a value for sizeInBits in that case.
Remove the dead cases/size plumbing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208494 91177308-0d34-0410-b5e6-96231b3b80d8
When using the ARM AAPCS, HFAs (Homogeneous Floating-point Aggregates) must
be passed in a block of consecutive floating-point registers, or on the stack.
This means that unused floating-point registers cannot be back-filled with
part of an HFA, however this can currently happen. This patch, along with the
corresponding clang patch (http://reviews.llvm.org/D3083) prevents this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208413 91177308-0d34-0410-b5e6-96231b3b80d8
comment of the API.
Relaxes the behavior of TargetInstrInfo::commuteInstruction when
TargetInstrInfo::findCommutedOpIndices returns false.
Previously TargetInstrInfo triggered a fatal error in such situation whereas based
on the comment in the API it should just return nullptr. Indeed the only
precondition that should be ensured is that the instruction must be commutable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208371 91177308-0d34-0410-b5e6-96231b3b80d8
(r207876 was reverted in r208131 after seeing some consistent buildbot
failure for MSVC 2012. The original commits were in r207724-r207726)
Takumi was nice enough to dig into this and locate this Microsoft
Connect issue:
http://connect.microsoft.com/VisualStudio/feedback/details/814899/forward-as-tuple-debug-implementation-error
describing a bug in MSVC2012's forward_as_tuple implementation.
Since the parameters in this instance are trivial/small, pass them by
value (using make_tuple) instead of perfectly-forwarded tuple of rvalue
references (involving the broken forward_as_tuple). Hopefully this will
satisfy MSVC2012.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208364 91177308-0d34-0410-b5e6-96231b3b80d8
The old method used by X86TTI to determine partial-unrolling thresholds was
messy (because it worked by testing target features), and also would not
correctly identify the target CPU if certain target features were disabled.
After some discussions on IRC with Chandler et al., it was decided that the
processor scheduling models were the right containers for this information
(because it is often tied to special uop dispatch-buffer sizes).
This does represent a small functionality change:
- For generic x86-64 (which uses the SB model and, thus, will get some
unrolling).
- For AMD cores (because they still currently use the SB scheduling model)
- For Haswell (based on benchmarking by Louis Gerbarg, it was decided to bump
the default threshold to 50; we're working on a test case for this).
Otherwise, nothing has changed for any other targets. The logic, however, has
been moved into BasicTTI, so other targets may now also opt-in to this
functionality simply by setting LoopMicroOpBufferSize in their processor
model definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208289 91177308-0d34-0410-b5e6-96231b3b80d8
When reducing the bitwidth of a comparison against a constant, the
original setcc's result type was used, which was incorrect.
No test since I don't think any other in tree targets change the
bitwidth of the setcc type depending on the bitwidth of the compared
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208236 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements the infrastructure to use named register constructs in
programs that need access to specific registers (bare metal, kernels, etc).
So far, only the stack pointer is supported as a technology preview, but as it
is, the intrinsic can already support all non-allocatable registers from any
architecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208104 91177308-0d34-0410-b5e6-96231b3b80d8
Committed initially in r207724-r207726 and reverted due to compiler-rt
crashes in r207732.
Instead, fix this harder with unordered_map and store the LexicalScopes
by value in the map. This did necessitate moving the definition of
LexicalScope above the definition of LexicalScopes.
Let's see how the buildbots/compilers tolerate unordered_map::emplace +
std::piecewise_construct + std::forward_as_tuple...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207876 91177308-0d34-0410-b5e6-96231b3b80d8
Breaks GDB buildbot
(http://lab.llvm.org:8011/builders/clang-x86_64-ubuntu-gdb-75/builds/14517)
GCC emits DW_AT_object_pointer /everywhere/ (declaration, abstract
definition, inlined subroutine), but it looks like GCC relies on it
being somewhere other than the declaration, at least. I'll experiment
further & can hopefully still remove it from the inlined_subroutine.
This reverts commit r207705.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207719 91177308-0d34-0410-b5e6-96231b3b80d8
They just don't need to be there - they're inherited from the abstract
definition. In theory I would like them to be inherited from the
declaration, but the DWARF standard doesn't quite say that... we can
probably do it anyway but I'm less confident about that so I'll leave it
for a separate commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207717 91177308-0d34-0410-b5e6-96231b3b80d8
This effectively reverts r164326, but adds some comments and
justification and ensures we /don't/ emit the DW_AT_object_pointer on
the (abstract and concrete) definitions. (while still preserving it on
standalone definitions involving ObjC Blocks)
This does increase the size of member function declarations from 7 to 11
bytes, unfortunately, but still seems like the Right Thing to do so that
callers that see only the declaration still have the information about
the object pointer. That said, I don't know what, if any, DWARF
consumers don't have a heuristic to guess this in the case of normal
C++ member functions - perhaps we can remove it entirely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207705 91177308-0d34-0410-b5e6-96231b3b80d8
For pattern like ((x >> C1) & Mask) << C2, DAG combiner may convert it
into (x >> (C1-C2)) & (Mask << C2), which makes pattern matching of ubfx
more difficult.
For example:
Given
%shr = lshr i64 %x, 4
%and = and i64 %shr, 15
%arrayidx = getelementptr inbounds [8 x [64 x i64]]* @arr, i64 0, %i64 2, i64 %and
%0 = load i64* %arrayidx
With current shift folding, it takes 3 instrs to compute base address:
lsr x8, x0, #1
and x8, x8, #0x78
add x8, x9, x8
If using ubfx, it only needs 2 instrs:
ubfx x8, x0, #4, #4
add x8, x9, x8, lsl #3
This fixes bug 19589
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207702 91177308-0d34-0410-b5e6-96231b3b80d8
DwarfDebug.h has a SmallVector member containing a unique_ptr of an
incomplete type. MSVC doesn't have key functions, so the vtable and
dtor are emitted in AsmPrinter.cpp, where DwarfDebug's ctor is called.
AsmPrinter.cpp include DwarfUnit.h and doesn't get a complete definition
of DwarfTypeUnit. We could fix the problem by including DwarfUnit.h in
DwarfDebug.h, but that would increase header bloat. Instead, define
~DwarfDebug out of line.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207701 91177308-0d34-0410-b5e6-96231b3b80d8
These were called from distinct places and had significant distinct
behavior. No need to make that a dynamic check inside the function
rather than just having two functions (refactoring some common code into
a helper function to be called from the two separate functions).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207539 91177308-0d34-0410-b5e6-96231b3b80d8
Seems at some point the intent was to emit fission ranges_base as unique
per CU but the code today emits ranges_base as the start of the ranges
section for all CUs being compiled and all the ranges_base relative
addresses are relative to that. So removing this dead code and leaving
the status quo until there's a reason to change it (perhaps something's
faster if it has distinct ranges for each CU).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207464 91177308-0d34-0410-b5e6-96231b3b80d8
(Clang doesn't warn here because it knows the string is benign - the
assert still checks what it's intended to - though putting the correct
parens does make clang-format format the code a little better)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207456 91177308-0d34-0410-b5e6-96231b3b80d8
Since all 4 ctor calls in DwarfDebug just pass in a trivially
constructed DIE with the right tag type, sink the tag selection down
into the Dwarf*Unit ctors (removing the argument entirely from callers
in DwarfDebug) and initialize the DIE member in DwarfUnit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207448 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the subtle constructScopeDIE has been refactored into two
functions - one returning memory to take ownership of, one returning a
pointer to already owning memory - push unique_ptr through more APIs.
I think this completes most of the unique_ptr ownership of DIEs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207442 91177308-0d34-0410-b5e6-96231b3b80d8
While refactoring out constructScopeDIE into two functions I realized we
were emitting DW_AT_object_pointer in the inlined subroutine when we
didn't need to (GCC doesn't, and the abstract subprogram definition has
the information already).
So here's the refactoring and the bug fix. This is one step of
refactoring to remove some subtle memory ownership semantics. It turns
out the original constructScopeDIE returned ownership in its return
value in some cases and not in others. The split into two functions now
separates those two semantics - further cleanup (unique_ptr, etc) will
follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207441 91177308-0d34-0410-b5e6-96231b3b80d8
Since there's no way to ensure the type unit in the .dwo and the type
unit skeleton in the .o are correlated, this cannot work.
This implementation is a bit inefficient for a few reasons, called out
in comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207323 91177308-0d34-0410-b5e6-96231b3b80d8
Sinking addition of the declaration attribute down to where the
signature is added. So that if the signature is not added neither is the
declaration attribute (this will come in handy when aborting type unit
construction to instead emit the type into the CU directly in some
cases)
Pull out type unit identifier hashing just to simplify the function a
little, it'll be getting longer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207321 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise the legalizer would just scalarize everything. Support for
mulhi in the targets isn't that great yet so on most targets we get
exactly the same scalarized output. Add a test for x86 vector udiv.
I had to disable the mulhi nodes on ARM because there aren't any patterns
for it. As far as I know ARM has instructions for getting the high part of
a multiply so this should be fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207315 91177308-0d34-0410-b5e6-96231b3b80d8
The included test case would return the incorrect results, because the expansion
of an shift with a constant shift amount of 0 would generate undefined behavior.
This is because ExpandShiftByConstant assumes that all shifts by constants with
a value of 0 have already been optimized away. This doesn't happen for opaque
constants and usually this isn't a problem, because opaque constants won't take
this code path - they are not supposed to. In the case that the opaque constant
has to be expanded by the legalizer, the legalizer would drop the opaque flag.
In this case we hit the limitations of ExpandShiftByConstant and create incorrect
code.
This commit fixes the legalizer by not dropping the opaque flag when expanding
opaque constants and adding an assertion to ExpandShiftByConstant to catch this
not supported case in the future.
This fixes <rdar://problem/16718472>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207304 91177308-0d34-0410-b5e6-96231b3b80d8
This also avoids the need for subtly side-effecting calls to manifest
strings in the string table at the point where items are added to the
accelerator tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207281 91177308-0d34-0410-b5e6-96231b3b80d8
Pulls out some more code from some of the rather monolithic DWARF
classes. Unlike the address table, the string table won't move up into
DwarfDebug - each DWARF file has its own string table (but there can be
only one address table).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207277 91177308-0d34-0410-b5e6-96231b3b80d8
buildbot - do not insert debug intrinsics before phi nodes.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207269 91177308-0d34-0410-b5e6-96231b3b80d8
This should reduce the chance of memory leaks like those fixed in
r207240.
There's still some unclear ownership of DIEs happening in DwarfDebug.
Pushing unique_ptr and references through more APIs should help expose
the cases where ownership is a bit fuzzy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207263 91177308-0d34-0410-b5e6-96231b3b80d8
Makes some more cases (the unit tests, specifically), lexically
compatible with a change to unique_ptr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207261 91177308-0d34-0410-b5e6-96231b3b80d8
Since this doesn't return ownership (the DIE has been added to the
specified parent already) nor return null, just return by reference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207259 91177308-0d34-0410-b5e6-96231b3b80d8
This'll make changing to unique_ptr ownership of DIEs easier since the
usages will now have '*' on them making them textually compatible
between unique_ptr and raw pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207253 91177308-0d34-0410-b5e6-96231b3b80d8
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207235 91177308-0d34-0410-b5e6-96231b3b80d8
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207165 91177308-0d34-0410-b5e6-96231b3b80d8
rather than by adding an overload and hoping that it's declared before the code
that calls it. (In a modules build, it isn't.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207133 91177308-0d34-0410-b5e6-96231b3b80d8
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine-intrinsics testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207130 91177308-0d34-0410-b5e6-96231b3b80d8
There's only ever one address pool, not one per DWARF output file, so
let's just have one.
(similar refactoring of the string pool to come soon)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207026 91177308-0d34-0410-b5e6-96231b3b80d8
Some of these types (DwarfDebug in particular) are quite large to begin
with (and I keep forgetting whether DwarfFile is in DwarfDebug or
DwarfUnit... ) so having a few smaller files seems like goodness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207010 91177308-0d34-0410-b5e6-96231b3b80d8
For now it contains a single flag, SanitizeAddress, which enables
AddressSanitizer instrumentation of inline assembly.
Patch by Yuri Gorshenin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206971 91177308-0d34-0410-b5e6-96231b3b80d8
This prompted me to push references through most of DwarfDebug. Sorry
for the churn.
Honestly it's a bit silly that we're passing around units all over the
place like that anyway and I think it's mostly due to the DIE attribute
adding utility functions being utilities in DwarfUnit. I should have
another go at moving them out of DwarfUnit...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206925 91177308-0d34-0410-b5e6-96231b3b80d8
So Chandler - how about those range algorithms? (would really love a
dereferencing range adapter for this sort of stuff)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206921 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206780.
This commit was regressing gdb.opt/inline-locals.exp in the GDB 7.5 test
suite. Reverting until I can fix the issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206867 91177308-0d34-0410-b5e6-96231b3b80d8
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206837 91177308-0d34-0410-b5e6-96231b3b80d8
while checking candidate for bit field extract.
Otherwise the value may not fit in uint64_t and this will trigger an
assertion.
This fixes PR19503.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206834 91177308-0d34-0410-b5e6-96231b3b80d8
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.
This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:
- Header files that need to provide a DEBUG_TYPE for some inline code
can do so by defining the macro before their inline code and undef-ing
it afterward so the macro does not escape.
- We no longer have rampant ODR violations due to including headers with
different DEBUG_TYPE definitions. This may be mostly an academic
violation today, but with modules these types of violations are easy
to check for and potentially very relevant.
Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.
The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206822 91177308-0d34-0410-b5e6-96231b3b80d8
The rationale for this artificial dependency seems to have been lost to the
ravages of time, it is covered by no regression tests, and has no impact on
test-suite performance numbers on either x86 or PPC.
For the test suite, on both x86 and PPC, I ran the test suite 10 times (both as
a baseline and with this change), and found no statistically-significant
changes. For PPC, I used a P7 box. For x86, I used an Intel Xeon E5430. Both
with -O3 -mcpu=native.
This was discussed on-list back in January, but I've not had a chance to run
the performance tests until today.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206795 91177308-0d34-0410-b5e6-96231b3b80d8
Requires switching some vectors to lists to maintain pointer validity.
These could be changed to forward_lists (singly linked) with a bit more
work - I've left comments to that effect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206780 91177308-0d34-0410-b5e6-96231b3b80d8
various .cpp files. This macro is inherently non-modular, and it wasn't
even needed in this header file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206775 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206707, reapplying r206704. The preceding commit
to CalcSpillWeights should have sorted out the failing buildbots.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206766 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206677, reapplying my BlockFrequencyInfo rewrite.
I've done a careful audit, added some asserts, and fixed a couple of
bugs (unfortunately, they were in unlikely code paths). There's a small
chance that this will appease the failing bots [1][2]. (If so, great!)
If not, I have a follow-up commit ready that will temporarily add
-debug-only=block-freq to the two failing tests, allowing me to compare
the code path between what the failing bots and what my machines (and
the rest of the bots) are doing. Once I've triggered those builds, I'll
revert both commits so the bots go green again.
[1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816
[2]: http://llvm-amd64.freebsd.your.org/b/builders/clang-i386-freebsd/builds/18445
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206704 91177308-0d34-0410-b5e6-96231b3b80d8
Win64 stack unwinder gets confused when execution flow "falls through" after
a call to 'noreturn' function. This fixes the "missing epilogue" problem by
emitting a trap instruction for IR 'unreachable' on x86_x64-pc-windows.
A secondary use for it would be for anyone wanting to make double-sure that
'noreturn' functions, indeed, do not return.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206684 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206666, as planned.
Still stumped on why the bots are failing. Sanitizer bots haven't
turned anything up. If anyone can help me debug either of the failures
(referenced in r206666) I'll owe them a beer. (In the meantime, I'll be
auditing my patch for undefined behaviour.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206677 91177308-0d34-0410-b5e6-96231b3b80d8