If the result of a common subexpression is used at all uses of the candidate
expression, CSE should not increase the live range of the common subexpression.
rdar://11393714 and rdar://11819721
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161396 91177308-0d34-0410-b5e6-96231b3b80d8
initialize fields of the class that it used.
The result was nonsense code.
Before:
0000000000000000 <foo>:
0: 00441100 0x441100
4: 03e00008 jr ra
8: 00000000 nop
After:
0000000000000000 <foo>:
0: 00041000 sll v0,a0,0x0
4: 03e00008 jr ra
8: 00000000 nop
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161377 91177308-0d34-0410-b5e6-96231b3b80d8
were using a class defined for 32 bit instructions and
thus the instruction was for addiu instead of daddiu.
This was corrected by adding the instruction opcode as a
field in the base class to be filled in by the defs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161359 91177308-0d34-0410-b5e6-96231b3b80d8
These 2 relocations gain access to the
highest and the second highest 16 bits
of a 64 bit object.
R_MIPS_HIGHER %higher(A+S)
The %higher(x) function is [ (((long long) x + 0x80008000LL) >> 32) & 0xffff ].
R_MIPS_HIGHEST %highest(A+S)
The %highest(x) function is [ (((long long) x + 0x800080008000LL) >> 48) & 0xffff ].
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161348 91177308-0d34-0410-b5e6-96231b3b80d8
The MFTB instruction itself is being phased out, and its functionality
is provided by MFSPR. According to the ISA docs, using MFSPR works on all known
chips except for the 601 (which did not have a timebase register anyway)
and the POWER3.
Thanks to Adhemerval Zanella for pointing this out!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161346 91177308-0d34-0410-b5e6-96231b3b80d8
On PPC64, this can be done with a simple TableGen pattern.
To enable this, I've added the (otherwise missing) readcyclecounter
SDNode definition to TargetSelectionDAG.td.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161302 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is mostly just refactoring a bunch of copy-and-pasted code, but
it also adds a check that the call instructions are readnone or readonly.
That check was already present for sin, cos, sqrt, log2, and exp2 calls, but
it was missing for the rest of the builtins being handled in this code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161282 91177308-0d34-0410-b5e6-96231b3b80d8
I noticed that SelectionDAGBuilder::visitCall was missing a check for memcmp
in TargetLibraryInfo, so that it would use custom code for memcmp calls even
with -fno-builtin. I also had to add a new -disable-simplify-libcalls option
to llc so that I could write a test for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161262 91177308-0d34-0410-b5e6-96231b3b80d8
Fast isel doesn't currently have support for translating builtin function
calls to target instructions. For embedded environments where the library
functions are not available, this is a matter of correctness and not
just optimization. Most of this patch is just arranging to make the
TargetLibraryInfo available in fast isel. <rdar://problem/12008746>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161232 91177308-0d34-0410-b5e6-96231b3b80d8
Add more comments and use early returns to reduce nesting in isLoadFoldable.
Also disable folding for V_SET0 to avoid introducing a const pool entry and
a const pool load.
rdar://10554090 and rdar://11873276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161207 91177308-0d34-0410-b5e6-96231b3b80d8
yaml2obj takes a textual description of an object file in YAML format
and outputs the binary equivalent. This greatly simplifies writing
tests that take binary object files as input.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161205 91177308-0d34-0410-b5e6-96231b3b80d8
- Relax to match even if epilogue (pop %ebp) were emitted.
- Assume the return value is stored to %xmm0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161155 91177308-0d34-0410-b5e6-96231b3b80d8
Machine CSE and other optimizations can remove instructions so folding
is possible at peephole while not possible at ISel.
This patch is a rework of r160919 and was tested on clang self-host on my local
machine.
rdar://10554090 and rdar://11873276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161152 91177308-0d34-0410-b5e6-96231b3b80d8
MipsSEFrameLowering.
Implement MipsSEFrameLowering::hasReservedCallFrame. Call frames will not be
reserved if there is a call with a large call frame or there are variable sized
objects on the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161090 91177308-0d34-0410-b5e6-96231b3b80d8
The frame object which points to the dynamically allocated area will not be
needed after changes are made to cease reserving call frames.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161076 91177308-0d34-0410-b5e6-96231b3b80d8
arguments to the stack in MipsISelLowering::LowerCall, use stack pointer and
integer offset operands rather than frame object operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161068 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, we were using EBX, but PIC requires the GOT to be in EBX before
function calls via PLT GOT pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161066 91177308-0d34-0410-b5e6-96231b3b80d8
single-precision load and store.
Also avoid selecting LUXC1 and SUXC1 instructions during isel. It is incorrect
to map unaligned floating point load/store nodes to these instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161063 91177308-0d34-0410-b5e6-96231b3b80d8
One motivating example is to sink an instruction from a basic block which has
two successors: one outside the loop, the other inside the loop. We should try
to sink the instruction outside the loop.
rdar://11980766
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161062 91177308-0d34-0410-b5e6-96231b3b80d8
We are extending live ranges, so kill flags are not accurate. They
aren't needed until they are recomputed after RA anyway.
<rdar://problem/11950722>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161023 91177308-0d34-0410-b5e6-96231b3b80d8
We branch to the successor with higher edge weight first.
Convert from
je LBB4_8 --> to outer loop
jmp LBB4_14 --> to inner loop
to
jne LBB4_14
jmp LBB4_8
PR12750
rdar: 11393714
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161018 91177308-0d34-0410-b5e6-96231b3b80d8
Empty macro arguments at the end of the list should be as-if not specified at
all, but those in the middle of the list need to be kept so as not to screw
up the positional numbering. E.g.:
.macro foo
foo_-bash___:
nop
.endm
foo 1, 2, 3, 4
foo 1, , 3, 4
Should create two labels, "foo_1_2_3_4" and "foo_1__3_4".
rdar://11948769
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161002 91177308-0d34-0410-b5e6-96231b3b80d8
where the other_half of the movt and movw relocation entries needs to get set
and only with the 16 bits of the other half.
rdar://10038370
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160978 91177308-0d34-0410-b5e6-96231b3b80d8
Machine CSE and other optimizations can remove instructions so folding
is possible at peephole while not possible at ISel.
rdar://10554090 and rdar://11873276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160919 91177308-0d34-0410-b5e6-96231b3b80d8
It is possible that an instruction can use and update EFLAGS.
When checking the safety, we should check the usage of EFLAGS first before
declaring it is safe to optimize due to the update.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160912 91177308-0d34-0410-b5e6-96231b3b80d8