If an Apple llvmCore build is done without assertions, and a client uses
the llvmCore headers with assertions enabled, or vice versa, then things will
break because some of the structure sizes in the API are different. Use the
unifdef tool to make the headers unconditionally match the way the llvmCore
libraries were built.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174460 91177308-0d34-0410-b5e6-96231b3b80d8
The stuff we're handing are all enums (Attribute::AttrKind), integers and
strings. Don't convert them to Constants, which is an unnecessary step here. The
rest of the changes are mostly mechanical.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174456 91177308-0d34-0410-b5e6-96231b3b80d8
pointer in function prologs/epilogs. The opcodes should depend on the
data model (LP64 vs. ILP32) rather than the architecture bit-ness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174446 91177308-0d34-0410-b5e6-96231b3b80d8
We generate one line table for each compilation unit in the object file.
Reviewed by Eric and Kevin.
rdar://problem/13067005
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174445 91177308-0d34-0410-b5e6-96231b3b80d8
is a vararg function.
The original code was examining flag OutputArg::IsFixed to determine whether
CC_MipsN_VarArg or CC_MipsN should be called. This is not correct, since this
flag is often set to false when the function being analyzed is a non-variadic
function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174442 91177308-0d34-0410-b5e6-96231b3b80d8
base point of a load, and the overall alignment of the load. This caused infinite loops in DAG combine with the
original application of this patch.
ORIGINAL COMMIT LOG:
When the target-independent DAGCombiner inferred a higher alignment for a load,
it would replace the load with one with the higher alignment. However, it did
not place the new load in the worklist, which prevented later DAG combines in
the same phase (for example, target-specific combines) from ever seeing it.
This patch corrects that oversight, and updates some tests whose output changed
due to slightly different DAGCombine outputs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174431 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce a helper class that computes the cost of memory access instructions.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174422 91177308-0d34-0410-b5e6-96231b3b80d8
All targets are now adding return value registers as implicit uses on
return instructions, and there is no longer a need for the live out
lists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174417 91177308-0d34-0410-b5e6-96231b3b80d8
Now that return value registers are return instruction uses, there is no
need for special treatment of return blocks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174416 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, when a fragment is relaxed, its size is modified, but its
offset is not (it gets laid out as a side effect of checking whether
it needs relaxation), then all subsequent fragments are invalidated
because their offsets need to change. When bundling is enabled,
relaxed fragments need to get laid out again, because the increase in
size may push it over a bundle boundary. So instead of only
invalidating subsequent fragments, also invalidate the fragment that
gets relaxed, which causes it to get laid out again.
This patch also fixes some trailing whitespace and fixes the
bundling-related debug output of MCFragments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174401 91177308-0d34-0410-b5e6-96231b3b80d8
Something very strange is going on with the output registers in this
target. Its ISelLowering code is inserting dangling CopyToReg nodes,
hoping that those physregs won't get clobbered before the RETURN.
This patch adds the output registers as implicit uses on RETURN
instructions in the custom emission pass. I'd much prefer to have those
CopyToReg nodes glued to the RETURNs, but I don't see how.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174400 91177308-0d34-0410-b5e6-96231b3b80d8
The liveout lists are about to be removed from MRI, this is the only
place they were used after register allocation.
Get the live out V registers directly from the return instructions
instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174399 91177308-0d34-0410-b5e6-96231b3b80d8
Use one intrinsic for all sorts of interpolation.
Use two separate unexpanded instructions to represent INTERP_XY and _ZW -
this will allow to eliminate one part if it's not used.
Track liveness of special interpolation regs instead of reserving them -
this will allow to reuse those regs, lowering reg pressure.
Patch By: Vadim Girlin
v2[Vincent Lejeune]: Rebased against current llvm master
Signed-off-by: Vadim Girlin <vadimgirlin@gmail.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174394 91177308-0d34-0410-b5e6-96231b3b80d8
Emitting the function name allows us to check for it in the FileCheck
tests so we can make sure FileCheck is checking the output of the
correct function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174392 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes 37 piglit tests and allows e.g. FlightGear to run with radeonsi.
Patch by: Michel Dänzer
Signed-off-by: Michel Dänzer <michel.daenzer@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174391 91177308-0d34-0410-b5e6-96231b3b80d8
Some paths through the copy constructors for 'ErrorOr' were calling
'get' when 'HasError' and 'IsValid' were not properly initialized.
Depending on what happened to be in memory for those member variables
the asserts in 'get' might incorrectly fire. Fixed by ensuring that
the member variables in question are always initialized before calling
'get'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174381 91177308-0d34-0410-b5e6-96231b3b80d8
In the loop vectorizer cost model, we used to ignore stores/loads of a pointer
type when computing the widest type within a loop. This meant that if we had
only stores/loads of pointers in a loop we would return a widest type of 8bits
(instead of 32 or 64 bit) and therefore a vector factor that was too big.
Now, if we see a consecutive store/load of pointers we use the size of a pointer
(from data layout).
This problem occured in SingleSource/Benchmarks/Shootout-C++/hash.cpp (reduced
test case is the first test in vector_ptr_load_store.ll).
radar://13139343
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174377 91177308-0d34-0410-b5e6-96231b3b80d8