I need to handle this for the test case in my following scheduler
commit.
Work is already under way to redesign the mechanism for node order
propagation because this case by case approach is unmaintainable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179448 91177308-0d34-0410-b5e6-96231b3b80d8
is a follow on to r179393 and r179399. Test case to be added on
the clang side.
Part of rdar://13453209
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179403 91177308-0d34-0410-b5e6-96231b3b80d8
immediate displacement. Specifically, add support for generating the proper IR.
We've been able to parse this for some time now. Test case to be added on the
clang side.
Part of rdar://13453209
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179393 91177308-0d34-0410-b5e6-96231b3b80d8
variables that use namespace alias qualifiers. Test case coming on clang side
shortly.
Part of rdar://13499009
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179343 91177308-0d34-0410-b5e6-96231b3b80d8
can build up the identifier string. No test case as support for looking up
these type of identifiers hasn't been implemented on the clang side.
Part of rdar://13499009
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179336 91177308-0d34-0410-b5e6-96231b3b80d8
specific logic. This makes the code much less fragile. Test case coming on the
clang side in a moment.
rdar://13634327
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179323 91177308-0d34-0410-b5e6-96231b3b80d8
As packed comparisons in AVX/SSE produce all 0s or all 1s in each SIMD lane,
vector select could be simplified to AND/OR or removed if one or both values
being selected is all 0s or all 1s.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179267 91177308-0d34-0410-b5e6-96231b3b80d8
As these two instructions in AVX extension are privileged instructions for
special purpose, it's only expected to be used in inlined assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179266 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is revised based on patch from Victor Umansky
<victor.umansky@intel.com>. More cases are handled in X86's bool
simplification, i.e.
- SETCC_CARRY
- value is truncated to i1 with AND
As a by-product, PR5443 is also fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179265 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for the COFF relocation types IMAGE_REL_I386_DIR32NB and
IMAGE_REL_AMD64_ADDR32NB for 32- and 64-bit respectively. These are
similar to normal 4-byte relocations except that they do not include
the base address of the image.
Image-relative relocations are used for debug information (32-bit) and
SEH unwind tables (64-bit).
A new MCSymbolRef variant called 'VK_COFF_IMGREL32' is introduced to
specify such relocations. For AT&T assembly, this variant can be accessed
using the symbol suffix '@imgrel'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179240 91177308-0d34-0410-b5e6-96231b3b80d8
into the operand array of the start of the memory reference descriptor.
Additional code in EncodeInstruction provides an additional adjustment.
This patch places that additional code in a separate function,
called getOperandBias, so that any caller of getMemoryOperandNo
can also call getOperandBias.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179211 91177308-0d34-0410-b5e6-96231b3b80d8
wasn't always the start of the operand. If there was a symbol reference, then
Start pointed to that token. It's very likely there are other places that need
to be updated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179210 91177308-0d34-0410-b5e6-96231b3b80d8
Test cases that regressed due to r179115, plus a few more, were added in
r179182. Original commit message below:
[ms-inline asm] Use parsePrimaryExpr in lieu of parseExpression if we need to
parse an identifier. Otherwise, parseExpression may parse multiple tokens,
which makes it impossible to properly compute an immediate displacement.
An example of such a case is the source operand (i.e., [Symbol + ImmDisp]) in
the below example:
__asm mov eax, [Symbol + ImmDisp]
Part of rdar://13611297
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179187 91177308-0d34-0410-b5e6-96231b3b80d8
parse an identifier. Otherwise, parseExpression may parse multiple tokens,
which makes it impossible to properly compute an immediate displacement.
An example of such a case is the source operand (i.e., [Symbol + ImmDisp]) in
the below example:
__asm mov eax, [Symbol + ImmDisp]
The existing test cases exercise this patch.
rdar://13611297
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179115 91177308-0d34-0410-b5e6-96231b3b80d8
rather than deriving the StringRef from the Start and End SMLocs.
Using the Start and End SMLocs works fine for operands such as [Symbol], but
not for operands such as [Symbol + ImmDisp]. All existing test cases that
reference a variable exercise this patch.
rdar://13602265
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179109 91177308-0d34-0410-b5e6-96231b3b80d8
The costs are overfitted so that I can still use the legalization factor.
For example the following kernel has about half the throughput vectorized than
unvectorized when compiled with SSE2. Before this patch we would vectorize it.
unsigned short A[1024];
double B[1024];
void f() {
int i;
for (i = 0; i < 1024; ++i) {
B[i] = (double) A[i];
}
}
radar://13599001
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179033 91177308-0d34-0410-b5e6-96231b3b80d8
During LTO, the target options on functions within the same Module may
change. This would necessitate resetting some of the back-end. Do this for X86,
because it's a Friday afternoon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178917 91177308-0d34-0410-b5e6-96231b3b80d8
memory operands.
Essentially, this layers an infix calculator on top of the parsing state
machine. The scale on the index register is still expected to be an immediate
__asm mov eax, [eax + ebx*4]
and will not work with more complex expressions. For example,
__asm mov eax, [eax + ebx*(2*2)]
The plus and minus binary operators assume the numeric value of a register is
zero so as to not change the displacement. Register operands should never
be an operand for a multiply or divide operation; the scale*indexreg
expression is always replaced with a zero on the operand stack to prevent
such a case.
rdar://13521380
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178881 91177308-0d34-0410-b5e6-96231b3b80d8
SSE2 has efficient support for shifts by a scalar. My previous change of making
shifts expensive did not take this into account marking all shifts as expensive.
This would prevent vectorization from happening where it is actually beneficial.
With this change we differentiate between shifts of constants and other shifts.
radar://13576547
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178808 91177308-0d34-0410-b5e6-96231b3b80d8
On certain architectures we can support efficient vectorized version of
instructions if the operand value is uniform (splat) or a constant scalar.
An example of this is a vector shift on x86.
We can efficiently support
for (i = 0 ; i < ; i += 4)
w[0:3] = v[0:3] << <2, 2, 2, 2>
but not
for (i = 0; i < ; i += 4)
w[0:3] = v[0:3] << x[0:3]
This patch adds a parameter to getArithmeticInstrCost to further qualify operand
values as uniform or uniform constant.
Targets can then choose to return a different cost for instructions with such
operand values.
A follow-up commit will test this feature on x86.
radar://13576547
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178807 91177308-0d34-0410-b5e6-96231b3b80d8
The default logic does not correctly identify costs of casts because they are
marked as custom on x86.
For some cases, where the shift amount is a scalar we would be able to generate
better code. Unfortunately, when this is the case the value (the splat) will get
hoisted out of the loop, thereby making it invisible to ISel.
radar://13130673
radar://13537826
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178703 91177308-0d34-0410-b5e6-96231b3b80d8
qualifiers.
This patch only adds support for parsing these identifiers in the
X86AsmParser. The front-end interface isn't capable of looking up
these identifiers at this point in time. The end result is the
compiler now errors during object file emission, rather than at
parse time. Test case coming shortly.
Part of rdar://13499009 and PR13340
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178566 91177308-0d34-0410-b5e6-96231b3b80d8
Buffered means a later divide may be executed out-of-order while a
prior divide is sitting (buffered) in a reservation station.
You can tell it's not pipelined, because operations that use it
reserve it for more than one cycle:
def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
let Latency = 25;
let ResourceCycles = [1, 10];
}
We don't currently distinguish between an unpipeline operation and one
that is split into multiple micro-ops requiring the same unit. Except
that the later may have NumMicroOps > 1 if they also consume
issue/dispatch resources.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178519 91177308-0d34-0410-b5e6-96231b3b80d8
'@SECREL' is what is used by the Microsoft assembler, but GNU as expects '@SECREL32'.
With the patch, the MC-generated code works fine in combination with a recent GNU as (2.23.51.20120920 here).
Patch by David Nadlinger!
Differential Revision: http://llvm-reviews.chandlerc.com/D429
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178427 91177308-0d34-0410-b5e6-96231b3b80d8
- RDRAND always clears the destination value when a random value is not
available (i.e. CF == 0). This value is truncated or zero-extended as
the false boolean value to be returned. Boolean simplification needs
to skip this 'zext' or 'trunc' node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178312 91177308-0d34-0410-b5e6-96231b3b80d8
To enable a load of a call address to be folded with that call, this
load is moved from outside of callseq into callseq. Such a moving
adds a non-glued node (that load) into a glued sequence. This non-glue
load is only removed when DAG selection folds them into a memory form
call instruction. When such instruction selection is disabled, it breaks
DAG schedule.
To prevent that, such moving is disabled when target favors register
indirect call.
Previous workaround disabling CALL32m/CALL64m insn selection is removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178308 91177308-0d34-0410-b5e6-96231b3b80d8