to catch cases like:
%reg1024<def> = MOV r1
%reg1025<def> = MOV r0
%reg1026<def> = ADD %reg1024, %reg1025
r0 = MOV %reg1026
By commuting ADD, it let coalescer eliminate all of the copies. However, there
was a bug in the heuristics where it ended up commuting the ADD in:
%reg1024<def> = MOV r0
%reg1025<def> = MOV 0
%reg1026<def> = ADD %reg1024, %reg1025
r0 = MOV %reg1026
That did no benefit but rather ensure the last MOV would not be coalesced.
rdar://11355268
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156048 91177308-0d34-0410-b5e6-96231b3b80d8
The ensures that virtual registers always belong to an allocatable class.
If your target attempts to create a vreg for an operand that has no
allocatable register subclass, you will crash quickly.
This ensures that targets define register classes as intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156046 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetPassManager's default constructor wants to initialize the PassManager
to 'null'. But it's illegal to bind a null reference to a null l-value. Make the
ivar a pointer instead.
PR12468
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155902 91177308-0d34-0410-b5e6-96231b3b80d8
This time, also fix the caller of AddGlue to properly handle
incomplete chains. AddGlue had failure modes, but shamefully hid them
from its caller. It's luck ran out.
Fixes rdar://11314175: BuildSchedUnits assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155749 91177308-0d34-0410-b5e6-96231b3b80d8
DAGCombine strangeness may result in multiple loads from the same
offset. They both may try to glue themselves to another load. We could
insist that the redundant loads glue themselves to each other, but the
beter fix is to bail out from bad gluing at the time we detect it.
Fixes rdar://11314175: BuildSchedUnits assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155668 91177308-0d34-0410-b5e6-96231b3b80d8
Cross-class joins have been normal and fully supported for a while now.
With TableGen generating the getMatchingSuperRegClass() hook, they are
unlikely to cause problems again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155552 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the heuristic for disabling cross-class joins. The greedy
register allocator can handle the narrow register classes, and when it
splits a live range, it can pick a larger register class.
Benchmarks were unaffected by this change.
<rdar://problem/11302212>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155551 91177308-0d34-0410-b5e6-96231b3b80d8
The DAG builder is a convenient place to do it. Hopefully this is more
efficient than a separate traversal over the same region.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155456 91177308-0d34-0410-b5e6-96231b3b80d8
MachineInstr sequence.
This uses the new target interface for tracking register pressure
using pressure sets to model overlapping register classes and
subregisters.
RegisterPressure results can be tracked incrementally or stored at
region boundaries. Global register pressure can be deduced from local
RegisterPressure results if desired.
This is an early, somewhat untested implementation. I'm working on
testing it within the context of a register pressure reducing
MachineScheduler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155454 91177308-0d34-0410-b5e6-96231b3b80d8
on X86 Atom. Some of our tests failed because the tail merging part of
the BranchFolding pass was creating new basic blocks which did not
contain live-in information. When the anti-dependency code in the Post-RA
scheduler ran, it would sometimes rename the register containing
the function return value because the fact that the return value was
live-in to the subsequent block had been lost. To fix this, it is necessary
to run the RegisterScavenging code in the BranchFolding pass.
This patch makes sure that the register scavenging code is invoked
in the X86 subtarget only when post-RA scheduling is being done.
Post RA scheduling in the X86 subtarget is only done for Atom.
This patch adds a new function to the TargetRegisterClass to control
whether or not live-ins should be preserved during branch folding.
This is necessary in order for the anti-dependency optimizations done
during the PostRASchedulerList pass to work properly when doing
Post-RA scheduling for the X86 in general and for the Intel Atom in particular.
The patch adds and invokes the new function trackLivenessAfterRegAlloc()
instead of using the existing requiresRegisterScavenging().
It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of
requiresRegisterScavenging(). It changes the all the targets that
implemented requiresRegisterScavenging() to also implement
trackLivenessAfterRegAlloc().
It adds an assertion in the Post RA scheduler to make sure that post RA
liveness information is available when it is needed.
It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order
to avoid running into the added assertion.
Finally, this patch restores the use of anti-dependency checking
(which was turned off temporarily for the 3.1 release) for
Intel Atom in the Post RA scheduler.
Patch by Andy Zhang!
Thanks to Jakob and Anton for their reviews.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155395 91177308-0d34-0410-b5e6-96231b3b80d8
The X86 target is editing the selection DAG while isel is selecting
nodes following a topological ordering. When the DAG hacking triggers
CSE, nodes can be deleted and bad things happen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155257 91177308-0d34-0410-b5e6-96231b3b80d8
Now that multiple DAGUpdateListeners can be active at the same time,
ISelPosition can become a local variable in DoInstructionSelection.
We simply register an ISelUpdater with CurDAG while ISelPosition exists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155249 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of passing listener pointers to RAUW, let SelectionDAG itself
keep a linked list of interested listeners.
This makes it possible to have multiple listeners active at once, like
RAUWUpdateListener was already doing. It also makes it possible to
register listeners up the call stack without controlling all RAUW calls
below.
DAGUpdateListener uses an RAII pattern to add itself to the SelectionDAG
list of active listeners.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155248 91177308-0d34-0410-b5e6-96231b3b80d8
The <undef> flag on a def operand only applies to partial register
redefinitions. Only print the flag when relevant, and print it as
<def,read-undef> to make it clearer what it means.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155239 91177308-0d34-0410-b5e6-96231b3b80d8
This nicely handles the most common case of virtual register sets, but
also handles anticipated cases where we will map pointers to IDs.
The goal is not to develop a completely generic SparseSet
template. Instead we want to handle the expected uses within llvm
without any template antics in the client code. I'm adding a bit of
template nastiness here, and some assumption about expected usage in
order to make the client code very clean.
The expected common uses cases I'm designing for:
- integer keys that need to be reindexed, and may map to additional
data
- densely numbered objects where we want pointer keys because no
number->object map exists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155227 91177308-0d34-0410-b5e6-96231b3b80d8
commits have had several major issues pointed out in review, and those
issues are not being addressed in a timely fashion. Furthermore, this
was all committed leading up to the v3.1 branch, and we don't need piles
of code with outstanding issues in the branch.
It is possible that not all of these commits were necessary to revert to
get us back to a green state, but I'm going to let the Hexagon
maintainer sort that out. They can recommit, in order, after addressing
the feedback.
Reverted commits, with some notes:
Primary commit r154616: HexagonPacketizer
- There are lots of review comments here. This is the primary reason
for reverting. In particular, it introduced large amount of warnings
due to a bad construct in tablegen.
- Follow-up commits that should be folded back into this when
reposting:
- r154622: CMake fixes
- r154660: Fix numerous build warnings in release builds.
- Please don't resubmit this until the three commits above are
included, and the issues in review addressed.
Primary commit r154695: Pass to replace transfer/copy ...
- Reverted to minimize merge conflicts. I'm not aware of specific
issues with this patch.
Primary commit r154703: New Value Jump.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154703: Remove iostream usage
- r154758: Fix CMake builds
- r154759: Fix build warnings in release builds
- Please incorporate these fixes and and review feedback before
resubmitting.
Primary commit r154829: Hexagon V5 (floating point) support.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154841: Remove unused variable (fixing build warnings)
There are also accompanying Clang commits that will be reverted for
consistency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155047 91177308-0d34-0410-b5e6-96231b3b80d8
transformation:
(X op C1) ^ C2 --> (X op C1) & ~C2 iff (C1&C2) == C2
should be done.
This change has been tested:
Using a debug+asserts build:
on the specific test case that brought this bug to light
make check-all
lnt nt
using this clang to build a release version of clang
Using the release+asserts clang-with-clang build:
on the specific test case that brought this bug to light
make check-all
lnt nt
Checking in because Evan wants it checked in. Test case forthcoming after
scrubbing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154955 91177308-0d34-0410-b5e6-96231b3b80d8
for the life of me remember why I wrote it this way, but I can't see any good
reason for it now. This patch replaces the custom linked list with an ilist.
This change should preserve the existing numberings exactly, so no generated code
should change (if it does, file a bug!).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154904 91177308-0d34-0410-b5e6-96231b3b80d8
both fallthrough and a conditional branch target the same successor.
Gracefully delete the conditional branch and introduce any unconditional
branch needed to reach the actual successor. This fixes memory
corruption in 2009-06-15-RegScavengerAssert.ll and possibly other tests.
Also, while I'm here fix a latent bug I spotted by inspection. I never
applied the same fundamental fix to this fallthrough successor finding
logic that I did to the logic used when there are no conditional
branches. As a consequence it would have selected landing pads had they
be aligned in just the right way here. I don't have a test case as
I spotted this by inspection, and the previous time I found this
required have of TableGen's source code to produce it. =/ I hate backend
bugs. ;]
Thanks to Jim Grosbach for helping me reason through this and reviewing
the fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154867 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly to test the waters. I'd like to get results from FNT
build bots and other bots running on non-x86 platforms.
This feature has been pretty heavily tested over the last few months by
me, and it fixes several of the execution time regressions caused by the
inlining work by preventing inlining decisions from radically impacting
block layout.
I've seen very large improvements in yacr2 and ackermann benchmarks,
along with the expected noise across all of the benchmark suite whenever
code layout changes. I've analyzed all of the regressions and fixed
them, or found them to be impossible to fix. See my email to llvmdev for
more details.
I'd like for this to be in 3.1 as it complements the inliner changes,
but if any failures are showing up or anyone has concerns, it is just
a flag flip and so can be easily turned off.
I'm switching it on tonight to try and get at least one run through
various folks' performance suites in case SPEC or something else has
serious issues with it. I'll watch bots and revert if anything shows up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154816 91177308-0d34-0410-b5e6-96231b3b80d8
rotation. When there is a loop backedge which is an unconditional
branch, we will end up with a branch somewhere no matter what. Try
placing this backedge in a fallthrough position above the loop header as
that will definitely remove at least one branch from the loop iteration,
where whole loop rotation may not.
I haven't seen any benchmarks where this is important but loop-blocks.ll
tests for it, and so this will be covered when I flip the default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154812 91177308-0d34-0410-b5e6-96231b3b80d8
laid out in a form with a fallthrough into the header and a fallthrough
out of the bottom. In that case, leave the loop alone because any
rotation will introduce unnecessary branches. If either side looks like
it will require an explicit branch, then the rotation won't add any, do
it to ensure the branch occurs outside of the loop (if possible) and
maximize the benefit of the fallthrough in the bottom.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154806 91177308-0d34-0410-b5e6-96231b3b80d8