mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
6a8c7bf8e7
on X86 Atom. Some of our tests failed because the tail merging part of the BranchFolding pass was creating new basic blocks which did not contain live-in information. When the anti-dependency code in the Post-RA scheduler ran, it would sometimes rename the register containing the function return value because the fact that the return value was live-in to the subsequent block had been lost. To fix this, it is necessary to run the RegisterScavenging code in the BranchFolding pass. This patch makes sure that the register scavenging code is invoked in the X86 subtarget only when post-RA scheduling is being done. Post RA scheduling in the X86 subtarget is only done for Atom. This patch adds a new function to the TargetRegisterClass to control whether or not live-ins should be preserved during branch folding. This is necessary in order for the anti-dependency optimizations done during the PostRASchedulerList pass to work properly when doing Post-RA scheduling for the X86 in general and for the Intel Atom in particular. The patch adds and invokes the new function trackLivenessAfterRegAlloc() instead of using the existing requiresRegisterScavenging(). It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of requiresRegisterScavenging(). It changes the all the targets that implemented requiresRegisterScavenging() to also implement trackLivenessAfterRegAlloc(). It adds an assertion in the Post RA scheduler to make sure that post RA liveness information is available when it is needed. It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order to avoid running into the added assertion. Finally, this patch restores the use of anti-dependency checking (which was turned off temporarily for the 3.1 release) for Intel Atom in the Post RA scheduler. Patch by Andy Zhang! Thanks to Jakob and Anton for their reviews. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155395 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
AsmPrinter | ||
SelectionDAG | ||
AggressiveAntiDepBreaker.cpp | ||
AggressiveAntiDepBreaker.h | ||
AllocationOrder.cpp | ||
AllocationOrder.h | ||
Analysis.cpp | ||
AntiDepBreaker.h | ||
BranchFolding.cpp | ||
BranchFolding.h | ||
CalcSpillWeights.cpp | ||
CallingConvLower.cpp | ||
CMakeLists.txt | ||
CodeGen.cpp | ||
CodePlacementOpt.cpp | ||
CriticalAntiDepBreaker.cpp | ||
CriticalAntiDepBreaker.h | ||
DeadMachineInstructionElim.cpp | ||
DFAPacketizer.cpp | ||
DwarfEHPrepare.cpp | ||
EdgeBundles.cpp | ||
ExecutionDepsFix.cpp | ||
ExpandISelPseudos.cpp | ||
ExpandPostRAPseudos.cpp | ||
GCMetadata.cpp | ||
GCMetadataPrinter.cpp | ||
GCStrategy.cpp | ||
IfConversion.cpp | ||
InlineSpiller.cpp | ||
InterferenceCache.cpp | ||
InterferenceCache.h | ||
IntrinsicLowering.cpp | ||
JITCodeEmitter.cpp | ||
LatencyPriorityQueue.cpp | ||
LexicalScopes.cpp | ||
LiveDebugVariables.cpp | ||
LiveDebugVariables.h | ||
LiveInterval.cpp | ||
LiveIntervalAnalysis.cpp | ||
LiveIntervalUnion.cpp | ||
LiveIntervalUnion.h | ||
LiveRangeCalc.cpp | ||
LiveRangeCalc.h | ||
LiveRangeEdit.cpp | ||
LiveStackAnalysis.cpp | ||
LiveVariables.cpp | ||
LLVMBuild.txt | ||
LLVMTargetMachine.cpp | ||
LocalStackSlotAllocation.cpp | ||
MachineBasicBlock.cpp | ||
MachineBlockFrequencyInfo.cpp | ||
MachineBlockPlacement.cpp | ||
MachineBranchProbabilityInfo.cpp | ||
MachineCodeEmitter.cpp | ||
MachineCopyPropagation.cpp | ||
MachineCSE.cpp | ||
MachineDominators.cpp | ||
MachineFunction.cpp | ||
MachineFunctionAnalysis.cpp | ||
MachineFunctionPass.cpp | ||
MachineFunctionPrinterPass.cpp | ||
MachineInstr.cpp | ||
MachineInstrBundle.cpp | ||
MachineLICM.cpp | ||
MachineLoopInfo.cpp | ||
MachineLoopRanges.cpp | ||
MachineModuleInfo.cpp | ||
MachineModuleInfoImpls.cpp | ||
MachinePassRegistry.cpp | ||
MachineRegisterInfo.cpp | ||
MachineScheduler.cpp | ||
MachineSink.cpp | ||
MachineSSAUpdater.cpp | ||
MachineVerifier.cpp | ||
Makefile | ||
OcamlGC.cpp | ||
OptimizePHIs.cpp | ||
Passes.cpp | ||
PeepholeOptimizer.cpp | ||
PHIElimination.cpp | ||
PHIEliminationUtils.cpp | ||
PHIEliminationUtils.h | ||
PostRASchedulerList.cpp | ||
ProcessImplicitDefs.cpp | ||
PrologEpilogInserter.cpp | ||
PrologEpilogInserter.h | ||
PseudoSourceValue.cpp | ||
README.txt | ||
RegAllocBase.cpp | ||
RegAllocBase.h | ||
RegAllocBasic.cpp | ||
RegAllocFast.cpp | ||
RegAllocGreedy.cpp | ||
RegAllocPBQP.cpp | ||
RegisterClassInfo.cpp | ||
RegisterClassInfo.h | ||
RegisterCoalescer.cpp | ||
RegisterCoalescer.h | ||
RegisterScavenging.cpp | ||
RenderMachineFunction.cpp | ||
RenderMachineFunction.h | ||
ScheduleDAG.cpp | ||
ScheduleDAGInstrs.cpp | ||
ScheduleDAGPrinter.cpp | ||
ScoreboardHazardRecognizer.cpp | ||
ShadowStackGC.cpp | ||
ShrinkWrapping.cpp | ||
SjLjEHPrepare.cpp | ||
SlotIndexes.cpp | ||
Spiller.cpp | ||
Spiller.h | ||
SpillPlacement.cpp | ||
SpillPlacement.h | ||
SplitKit.cpp | ||
SplitKit.h | ||
StackProtector.cpp | ||
StackSlotColoring.cpp | ||
StrongPHIElimination.cpp | ||
TailDuplication.cpp | ||
TargetFrameLoweringImpl.cpp | ||
TargetInstrInfoImpl.cpp | ||
TargetLoweringObjectFileImpl.cpp | ||
TargetOptionsImpl.cpp | ||
TwoAddressInstructionPass.cpp | ||
UnreachableBlockElim.cpp | ||
VirtRegMap.cpp | ||
VirtRegMap.h |
//===---------------------------------------------------------------------===// Common register allocation / spilling problem: mul lr, r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 ldr r4, [sp, #+52] mla r4, r3, lr, r4 can be: mul lr, r4, lr mov r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 and then "merge" mul and mov: mul r4, r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 It also increase the likelihood the store may become dead. //===---------------------------------------------------------------------===// bb27 ... ... %reg1037 = ADDri %reg1039, 1 %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10 Successors according to CFG: 0x8b03bf0 (#5) bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5): Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4) %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0> Note ADDri is not a two-address instruction. However, its result %reg1037 is an operand of the PHI node in bb76 and its operand %reg1039 is the result of the PHI node. We should treat it as a two-address code and make sure the ADDri is scheduled after any node that reads %reg1039. //===---------------------------------------------------------------------===// Use local info (i.e. register scavenger) to assign it a free register to allow reuse: ldr r3, [sp, #+4] add r3, r3, #3 ldr r2, [sp, #+8] add r2, r2, #2 ldr r1, [sp, #+4] <== add r1, r1, #1 ldr r0, [sp, #+4] add r0, r0, #2 //===---------------------------------------------------------------------===// LLVM aggressively lift CSE out of loop. Sometimes this can be negative side- effects: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: load [i + R1] ... load [i + R2] ... load [i + R3] Suppose there is high register pressure, R1, R2, R3, can be spilled. We need to implement proper re-materialization to handle this: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: R1 = X + 4 @ re-materialized load [i + R1] ... R2 = X + 7 @ re-materialized load [i + R2] ... R3 = X + 15 @ re-materialized load [i + R3] Furthermore, with re-association, we can enable sharing: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: T = i + X load [T + 4] ... load [T + 7] ... load [T + 15] //===---------------------------------------------------------------------===// It's not always a good idea to choose rematerialization over spilling. If all the load / store instructions would be folded then spilling is cheaper because it won't require new live intervals / registers. See 2003-05-31-LongShifts for an example. //===---------------------------------------------------------------------===// With a copying garbage collector, derived pointers must not be retained across collector safe points; the collector could move the objects and invalidate the derived pointer. This is bad enough in the first place, but safe points can crop up unpredictably. Consider: %array = load { i32, [0 x %obj] }** %array_addr %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n %old = load %obj** %nth_el %z = div i64 %x, %y store %obj* %new, %obj** %nth_el If the i64 division is lowered to a libcall, then a safe point will (must) appear for the call site. If a collection occurs, %array and %nth_el no longer point into the correct object. The fix for this is to copy address calculations so that dependent pointers are never live across safe point boundaries. But the loads cannot be copied like this if there was an intervening store, so may be hard to get right. Only a concurrent mutator can trigger a collection at the libcall safe point. So single-threaded programs do not have this requirement, even with a copying collector. Still, LLVM optimizations would probably undo a front-end's careful work. //===---------------------------------------------------------------------===// The ocaml frametable structure supports liveness information. It would be good to support it. //===---------------------------------------------------------------------===// The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be revisited. The check is there to work around a misuse of directives in inline assembly. //===---------------------------------------------------------------------===// It would be good to detect collector/target compatibility instead of silently doing the wrong thing. //===---------------------------------------------------------------------===// It would be really nice to be able to write patterns in .td files for copies, which would eliminate a bunch of explicit predicates on them (e.g. no side effects). Once this is in place, it would be even better to have tblgen synthesize the various copy insertion/inspection methods in TargetInstrInfo. //===---------------------------------------------------------------------===// Stack coloring improvements: 1. Do proper LiveStackAnalysis on all stack objects including those which are not spill slots. 2. Reorder objects to fill in gaps between objects. e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4 //===---------------------------------------------------------------------===// The scheduler should be able to sort nearby instructions by their address. For example, in an expanded memset sequence it's not uncommon to see code like this: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) Each of the stores is independent, and the scheduler is currently making an arbitrary decision about the order. //===---------------------------------------------------------------------===// Another opportunitiy in this code is that the $0 could be moved to a register: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) This would save substantial code size, especially for longer sequences like this. It would be easy to have a rule telling isel to avoid matching MOV32mi if the immediate has more than some fixed number of uses. It's more involved to teach the register allocator how to do late folding to recover from excessive register pressure.