shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214838 91177308-0d34-0410-b5e6-96231b3b80d8
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203204 91177308-0d34-0410-b5e6-96231b3b80d8
BuildMI instructions were not including MachineMemOperand information.
This was discovered by 'SingleSource/Benchmarks/Stanford/Oscar' failing
due to a FrameIndex load incorrectly being hoisted by postra-machine-licm.
No other tests have been found to fail.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201562 91177308-0d34-0410-b5e6-96231b3b80d8
We also narrow the liveness of FP & LR during the prologue to
reflect the actual usage of the registers.
I have been unable to construct a test to prove the previous live
range was too large.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198611 91177308-0d34-0410-b5e6-96231b3b80d8
eliminateFrameIndex() has been reworked to handle both small & large frames
with either a FP or SP.
An additional Slot is required for Scavenging spills when not using FP for large frames.
Reworked the handling of Register Scavenging.
Whether we are using an FP or not, whether it is a large frame or not,
and whether we are using a large code model or not are now independent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196091 91177308-0d34-0410-b5e6-96231b3b80d8
getExceptionHandlingType is not ExceptionHandling::DwarfCFI on xcore, so
etFrameInstructions is never called. There is no point creating cfi
instructions if they are never used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181979 91177308-0d34-0410-b5e6-96231b3b80d8
To add a frame now there is a dedicated addFrameMove which also takes
care of constructing the move itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181657 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we only checked if the LR required saving if the frame size was
non zero. However because the caller reserves 1 word for the callee to use
that doesn't count towards our frame size it is possible for the LR to need
saving and for the frame size to be 0.
We didn't hit when the LR needed saving because of a function calls because
the 1 word of stack we must allocate for our callee means the frame size
is always non zero in this case. However we can hit this case if the LR is
clobbered in inline asm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181520 91177308-0d34-0410-b5e6-96231b3b80d8
At the time when the XCore backend was added there were some issues with
with overlapping register classes but these all seem to be fixed now.
Describing the register classes correctly allow us to get rid of a
codegen only instruction (LDAWSP_lru6_RRegs) and it means we can
disassemble ru6 instructions that use registers above r11.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178782 91177308-0d34-0410-b5e6-96231b3b80d8
This patch lets the register scavenger make use of multiple spill slots in
order to guarantee that it will be able to provide multiple registers
simultaneously.
To support this, the RS's API has changed slightly: setScavengingFrameIndex /
getScavengingFrameIndex have been replaced by addScavengingFrameIndex /
isScavengingFrameIndex / getScavengingFrameIndices.
In forthcoming commits, the PowerPC backend will use this capability in order
to implement the spilling of condition registers, and some special-purpose
registers, without relying on r0 being reserved. In some cases, spilling these
registers requires two GPRs: one for addressing and one to hold the value being
transferred.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177774 91177308-0d34-0410-b5e6-96231b3b80d8
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175788 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165488 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM is now -Wunused-private-field clean except for
- lib/MC/MCDisassembler/Disassembler.h. Not sure why it keeps all those unaccessible fields.
- gtest.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158096 91177308-0d34-0410-b5e6-96231b3b80d8
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145714 91177308-0d34-0410-b5e6-96231b3b80d8