This models the A9 processor at the level of instruction operands, as
opposed to the itinerary, which models each operation at the level of
pipeline stages.
The two primary motivations are:
1) Allow MachineScheduler to model A9 as an out-of-order processor. It
can now distinguish between hazards that force interlocking vs.
buffered resources.
2) Reduce long-term maintenance by allowing the itinerary and target
hooks to eventually be removed. Note that almost all of the complexity
in the new model exists to model instruction variants, which the
itinerary cannot handle. Instead the scheduler previously relied on
processor-specific target hooks which are incomplete and buggy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163921 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces a possibility for Hexagon MI scheduler
to perform some target specific post- processing on the scheduling
DAG prior to scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163903 91177308-0d34-0410-b5e6-96231b3b80d8
* wrap code blocks in \code ... \endcode;
* refer to parameter names in paragraphs correctly (\arg is not what most
people want -- it starts a new paragraph);
* use \param instead of \arg to document parameters in order to be consistent
with the rest of the codebase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163902 91177308-0d34-0410-b5e6-96231b3b80d8
- Enhance the fix to PR12312 to support wider integer, such as 256-bit
integer. If more than 1 fully evaluated vectors are found, POR them
first followed by the final PTEST.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163832 91177308-0d34-0410-b5e6-96231b3b80d8
Add a PatFrag to match X86tcret using 6 fixed registers or less. This
avoids folding loads into TCRETURNmi64 using 7 or more volatile
registers.
<rdar://problem/12282281>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163819 91177308-0d34-0410-b5e6-96231b3b80d8
We don't have enough GR64_TC registers when calling a varargs function
with 6 arguments. Since %al holds the number of vector registers used,
only %r11 is available as a scratch register.
This means that addressing modes using both base and index registers
can't be folded into TCRETURNmi64.
<rdar://problem/12282281>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163761 91177308-0d34-0410-b5e6-96231b3b80d8
1. Remove RA from list of allocatable registers
2. Enable d,y,r constraint inline assembly instructions
Patch by Reed Kotler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163753 91177308-0d34-0410-b5e6-96231b3b80d8
- BlockAddress has no support of BA + offset form and there is no way to
propagate that offset into machine operand;
- Add BA + offset support and a new interface 'getTargetBlockAddress' to
simplify target block address forming;
- All targets are modified to use new interface and X86 backend is enhanced to
support BA + offset addressing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163743 91177308-0d34-0410-b5e6-96231b3b80d8
nonvolatile condition register fields across calls under the SVR4 ABIs.
* With the 64-bit ABI, the save location is at a fixed offset of 8 from
the stack pointer. The frame pointer cannot be used to access this
portion of the stack frame since the distance from the frame pointer may
change with alloca calls.
* With the 32-bit ABI, the save location is just below the general
register save area, and is accessed via the frame pointer like the rest
of the save areas. This is an optional slot, so it must only be created
if any of CR2, CR3, and CR4 were modified.
* For both ABIs, save/restore logic is generated only if one of the
nonvolatile CR fields were modified.
I also took this opportunity to clean up an extra FIXME in
PPCFrameLowering.h. Save area offsets for 32-bit GPRs are meaningless
for the 64-bit ABI, so I removed them for correctness and efficiency.
Fixes PR13708 and partially also PR13623. It lets us enable exception handling
on PPC64.
Patch by William J. Schmidt!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163713 91177308-0d34-0410-b5e6-96231b3b80d8
Sub-register lane masks are bitmasks that can be used to determine if
two sub-registers of a virtual register will overlap. For example, ARM's
ssub0 and ssub1 sub-register indices don't overlap each other, but both
overlap dsub0 and qsub0.
The lane masks will be accurate on most targets, but on targets that use
sub-register indexes in an irregular way, the masks may conservatively
report that two sub-register indices overlap when the eventually
allocated physregs don't.
Irregular register banks also mean that the bits in a lane mask can't be
mapped onto register units, but the concept is similar.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163630 91177308-0d34-0410-b5e6-96231b3b80d8
The Hexagon target decided to use a lot of functionality from the
target-independent scheduler. That's fine, and other targets should be
able to do the same. This reorg and API update makes that easy.
For the record, ScheduleDAGMI was not meant to be subclassed. Instead,
new scheduling algorithms should be able to implement
MachineSchedStrategy and be done. But if need be, it's nice to be
able to extend ScheduleDAGMI, so I also made that easier. The target
scheduler is somewhat more apt to break that way though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163580 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM backend can eliminate cmp instructions by reusing flags from a
nearby sub instruction with similar arguments.
Don't do that if the sub is predicated - the flags are not written
unconditionally.
<rdar://problem/12263428>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163535 91177308-0d34-0410-b5e6-96231b3b80d8
- If a boolean value is generated from CMOV and tested as boolean value,
simplify the use of test result by referencing the original condition.
RDRAND intrinisc is one of such cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163516 91177308-0d34-0410-b5e6-96231b3b80d8
For some reason .lcomm uses byte alignment and .comm log2 alignment so we can't
use the same setting for both. Fix this by reintroducing the LCOMM enum.
I verified this against mingw's gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163420 91177308-0d34-0410-b5e6-96231b3b80d8
- Darwin lied about not supporting .lcomm and turned it into zerofill in the
asm parser. Push the zerofill-conversion down into macho-specific code.
- This makes the tri-state LCOMMType enum superfluous, there are no targets
without .lcomm.
- Do proper error reporting when trying to use .lcomm with alignment on a target
that doesn't support it.
- .comm and .lcomm alignment was parsed in bytes on COFF, should be power of 2.
- Fixes PR13755 (.lcomm crashes on ELF).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163395 91177308-0d34-0410-b5e6-96231b3b80d8
gas accepts this and it seems to be common enough to be worth supporting. This
doesn't affect the parsing of reg operands outside of .cfi directives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163390 91177308-0d34-0410-b5e6-96231b3b80d8