it actually does. Simplify CountOperands a little by reusing
ComputeMemOperandsEnd. And reword some comments for both.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47198 91177308-0d34-0410-b5e6-96231b3b80d8
1) ConstantFP is now expand by default
2) ConstantFP is not turned into TargetConstantFP during Legalize
if it is legal.
This allows ConstantFP to be handled like Constant, allowing for
targets that can encode FP immediates as MachineOperands.
As a bonus, fix up Itanium FP constants, which now correctly match,
and match more constants! Hooray.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47121 91177308-0d34-0410-b5e6-96231b3b80d8
initializer problem, a minor tweak to the way the
DAGISelEmitter finds load/store nodes, and a renaming of the
new PseudoSourceValue objects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46827 91177308-0d34-0410-b5e6-96231b3b80d8
Added ISD::DECLARE node type to represent llvm.dbg.declare intrinsic. Now the intrinsic calls are lowered into a SDNode and lives on through out the codegen passes.
For now, since all the debugging information recording is done at isel time, when a ISD::DECLARE node is selected, it has the side effect of also recording the variable. This is a short term solution that should be fixed in time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46659 91177308-0d34-0410-b5e6-96231b3b80d8
in the backend. Introduce a new SDNode type, MemOperandSDNode, for
holding a MemOperand in the SelectionDAG IR, and add a MemOperand
list to MachineInstr, and code to manage them. Remove the offset
field from SrcValueSDNode; uses of SrcValueSDNode that were using
it are all all using MemOperandSDNode now.
Also, begin updating some getLoad and getStore calls to use the
PseudoSourceValue objects.
Most of this was written by Florian Brander, some
reorganization and updating to TOT by me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46585 91177308-0d34-0410-b5e6-96231b3b80d8
Note this solution might be somewhat fragile since ISD::LABEL may be used for other
purposes. If that ends up to be an issue, we may need to introduce a different node
for debug labels.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46571 91177308-0d34-0410-b5e6-96231b3b80d8
all clients over to using predicates instead of these flags directly.
These are now private values which are only to be used to statically
initialize the tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45692 91177308-0d34-0410-b5e6-96231b3b80d8
flags that can be set. Add predicates for the ones lacking it, and switch
some clients over to using the predicates instead of Flags directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45690 91177308-0d34-0410-b5e6-96231b3b80d8
over to using them, instead of diddling Flags directly. Change the
various flags from const variables to enums.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45677 91177308-0d34-0410-b5e6-96231b3b80d8
that it is cheap and efficient to get.
Move a variety of predicates from TargetInstrInfo into
TargetInstrDescriptor, which makes it much easier to query a predicate
when you don't have TII around. Now you can use MI->getDesc()->isBranch()
instead of going through TII, and this is much more efficient anyway. Not
all of the predicates have been moved over yet.
Update old code that used MI->getInstrDescriptor()->Flags to use the
new predicates in many places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45674 91177308-0d34-0410-b5e6-96231b3b80d8
that "machine" classes are used to represent the current state of
the code being compiled. Given this expanded name, we can start
moving other stuff into it. For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.
Update all the clients to match.
This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45467 91177308-0d34-0410-b5e6-96231b3b80d8
The meaning of getTypeSize was not clear - clarifying it is important
now that we have x86 long double and arbitrary precision integers.
The issue with long double is that it requires 80 bits, and this is
not a multiple of its alignment. This gives a primitive type for
which getTypeSize differed from getABITypeSize. For arbitrary precision
integers it is even worse: there is the minimum number of bits needed to
hold the type (eg: 36 for an i36), the maximum number of bits that will
be overwriten when storing the type (40 bits for i36) and the ABI size
(i.e. the storage size rounded up to a multiple of the alignment; 64 bits
for i36).
This patch removes getTypeSize (not really - it is still there but
deprecated to allow for a gradual transition). Instead there is:
(1) getTypeSizeInBits - a number of bits that suffices to hold all
values of the type. For a primitive type, this is the minimum number
of bits. For an i36 this is 36 bits. For x86 long double it is 80.
This corresponds to gcc's TYPE_PRECISION.
(2) getTypeStoreSizeInBits - the maximum number of bits that is
written when storing the type (or read when reading it). For an
i36 this is 40 bits, for an x86 long double it is 80 bits. This
is the size alias analysis is interested in (getTypeStoreSize
returns the number of bytes). There doesn't seem to be anything
corresponding to this in gcc.
(3) getABITypeSizeInBits - this is getTypeStoreSizeInBits rounded
up to a multiple of the alignment. For an i36 this is 64, for an
x86 long double this is 96 or 128 depending on the OS. This is the
spacing between consecutive elements when you form an array out of
this type (getABITypeSize returns the number of bytes). This is
TYPE_SIZE in gcc.
Since successive elements in a SequentialType (arrays, pointers
and vectors) need to be aligned, the spacing between them will be
given by getABITypeSize. This means that the size of an array
is the length times the getABITypeSize. It also means that GEP
computations need to use getABITypeSize when computing offsets.
Furthermore, if an alloca allocates several elements at once then
these too need to be aligned, so the size of the alloca has to be
the number of elements multiplied by getABITypeSize. Logically
speaking this doesn't have to be the case when allocating just
one element, but it is simpler to also use getABITypeSize in this
case. So alloca's and mallocs should use getABITypeSize. Finally,
since gcc's only notion of size is that given by getABITypeSize, if
you want to output assembler etc the same as gcc then getABITypeSize
is the size you want.
Since a store will overwrite no more than getTypeStoreSize bytes,
and a read will read no more than that many bytes, this is the
notion of size appropriate for alias analysis calculations.
In this patch I have corrected all type size uses except some of
those in ScalarReplAggregates, lib/Codegen, lib/Target (the hard
cases). I will get around to auditing these too at some point,
but I could do with some help.
Finally, I made one change which I think wise but others might
consider pointless and suboptimal: in an unpacked struct the
amount of space allocated for a field is now given by the ABI
size rather than getTypeStoreSize. I did this because every
other place that reserves memory for a type (eg: alloca) now
uses getABITypeSize, and I didn't want to make an exception
for unpacked structs, i.e. I did it to make things more uniform.
This only effects structs containing long doubles and arbitrary
precision integers. If someone wants to pack these types more
tightly they can always use a packed struct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43620 91177308-0d34-0410-b5e6-96231b3b80d8
(almost) a register copy. However, it always coalesced to the register of the
RHS (the super-register). All uses of the result of a EXTRACT_SUBREG are sub-
register uses which adds subtle complications to load folding, spiller rewrite,
etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42899 91177308-0d34-0410-b5e6-96231b3b80d8
scheduler will try a number of tricks in order to avoid generating the
copies. This may not be possible in case the node produces a chain value
that prevent movement. Try unfolding the load from the node before to allow
it to be moved / cloned.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42625 91177308-0d34-0410-b5e6-96231b3b80d8
terminator) the one that has a CopyToReg use. This fixes
2006-05-11-InstrSched.ll with -new-cc-modeling-scheme.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42453 91177308-0d34-0410-b5e6-96231b3b80d8
- Added ability to emit cross class register copies to the BBRU scheduler.
- More aggressive backtracking.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42375 91177308-0d34-0410-b5e6-96231b3b80d8
simply specify them as results and let scheduledag handle them. That
is, instead of
SDOperand Flag = DAG.getTargetNode(Opc, MVT::i32, MVT::Flag, ...)
SDOperand Result = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, Flag)
Just write:
SDOperand Result = DAG.getTargetNode(Opc, MVT::i32, MVT::i32, ...)
And let scheduledag emit the move from X86::EAX to a virtual register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40710 91177308-0d34-0410-b5e6-96231b3b80d8