in the instruction tables and fixed a few bugs that
were causing decode conflicts. Rudimentary tests
are coming up in the next patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127646 91177308-0d34-0410-b5e6-96231b3b80d8
Use this to make the X86 and ARM targets set isCodeGenOnly=1
automatically for their instructions that have Format=Pseudo,
resolving a hack in tblgen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117862 91177308-0d34-0410-b5e6-96231b3b80d8
else in X86), and add support for pavgusb. This is apparently the
only instruction (other than movsx) that is preventing ffmpeg from building
with clang.
If someone else is interested in banging out the rest of the 3DNow!
instructions, it should be quite easy now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115466 91177308-0d34-0410-b5e6-96231b3b80d8
- Add encode bits for VEX_W
- All 128-bit SSE 1 & SSE2 instructions that are described
in the .td file now have a AVX encoded form already working.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107365 91177308-0d34-0410-b5e6-96231b3b80d8
be done incrementally and intermixed with the adding of more
AVX instructions. This is a first step in that direction
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106251 91177308-0d34-0410-b5e6-96231b3b80d8
In file included from X86InstrInfo.cpp:16:
X86GenInstrInfo.inc:2789: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2790: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2792: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2793: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2808: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2809: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2816: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2817: error: integer constant is too large for 'long' type
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105524 91177308-0d34-0410-b5e6-96231b3b80d8
When a target instruction wants to set target-specific flags, it should simply
set bits in the TSFlags bit vector defined in the Instruction TableGen class.
This works well because TableGen resolves member references late:
class I : Instruction {
AddrMode AM = AddrModeNone;
let TSFlags{3-0} = AM.Value;
}
let AM = AddrMode4 in
def ADD : I;
TSFlags gets the expected bits from AddrMode4 in this example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100384 91177308-0d34-0410-b5e6-96231b3b80d8
a new subtarget option for AES and check for the support. Add "westmere"
line of processors and add AES-NI support to the core i7.
Add a couple of TODOs for information I couldn't verify.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100231 91177308-0d34-0410-b5e6-96231b3b80d8
SSEDomainFix will collapse to the domain with the lower number when it has a
choice. The SSEPackedSingle domain often has smaller instructions, so prefer
that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99952 91177308-0d34-0410-b5e6-96231b3b80d8
Remove much horribleness from X86InstrFormats as a result. Similar
simplifications are probably possible for other targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99539 91177308-0d34-0410-b5e6-96231b3b80d8
On Nehalem and newer CPUs there is a 2 cycle latency penalty on using a register
in a different domain than where it was defined. Some instructions have
equvivalents for different domains, like por/orps/orpd.
The SSEDomainFix pass tries to minimize the number of domain crossings by
changing between equvivalent opcodes where possible.
This is a work in progress, in particular the pass doesn't do anything yet. SSE
instructions are tagged with their execution domain in TableGen using the last
two bits of TSFlags. Note that not all instructions are tagged correctly. Life
just isn't that simple.
The SSE execution domain issue is very similar to the ARM NEON/VFP pipeline
issue handled by NEONMoveFixPass. This pass may become target independent to
handle both.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99524 91177308-0d34-0410-b5e6-96231b3b80d8
not get an "Unknown immediate size" assert failure when used. All instructions
of this form have an 8-bit immediate. Also added a test case of an example
instruction that is of this form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99435 91177308-0d34-0410-b5e6-96231b3b80d8
Add patterns and instruction encoding information.
Add custom lowering to deal with hardwired return register of
uncertain type (xmm0).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79377 91177308-0d34-0410-b5e6-96231b3b80d8
bytes for F2 0F 38 and propagate. Add a FIXME for a set
of possibilities which correspond to intrinsics already used.
New test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78508 91177308-0d34-0410-b5e6-96231b3b80d8