of apint codegen failure is the DAG combiner doing
the wrong thing because it was comparing MVT's using
< rather than comparing the number of bits. Removing
the < method makes this mistake impossible to commit.
Instead, add helper methods for comparing bits and use
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52098 91177308-0d34-0410-b5e6-96231b3b80d8
and better control the abstraction. Rename the type
to MVT. To update out-of-tree patches, the main
thing to do is to rename MVT::ValueType to MVT, and
rewrite expressions like MVT::getSizeInBits(VT) in
the form VT.getSizeInBits(). Use VT.getSimpleVT()
to extract a MVT::SimpleValueType for use in switch
statements (you will get an assert failure if VT is
an extended value type - these shouldn't exist after
type legalization).
This results in a small speedup of codegen and no
new testsuite failures (x86-64 linux).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52044 91177308-0d34-0410-b5e6-96231b3b80d8
several things that were neither in an anonymous namespace nor static
but not intended to be global.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51017 91177308-0d34-0410-b5e6-96231b3b80d8
fixes are target-specific lowering of frame indices, fix constants generated
for the FSMBI instruction, and fixing SPUTargetLowering::computeMaskedBitsFor-
TargetNode().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50462 91177308-0d34-0410-b5e6-96231b3b80d8
Fix bugs encountered, mostly due to range matching for immediates;
the CellSPU's 10-bit immediates are sign extended, covering a
larger range of unsigned values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48575 91177308-0d34-0410-b5e6-96231b3b80d8
for CellSPU modifications:
- SPUInstrInfo.td refactoring: "multiclass" really is _your_ friend.
- Other improvements based on refactoring effort in SPUISelLowering.cpp,
esp. in SPUISelLowering::PerformDAGCombine(), where zero amount shifts and
rotates are now eliminiated, other scalar-to-vector-to-scalar silliness
is also eliminated.
- 64-bit operations are being implemented, _muldi3.c gcc runtime now
compiles and generates the right code. More work still needs to be done.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47532 91177308-0d34-0410-b5e6-96231b3b80d8
Added ISD::DECLARE node type to represent llvm.dbg.declare intrinsic. Now the intrinsic calls are lowered into a SDNode and lives on through out the codegen passes.
For now, since all the debugging information recording is done at isel time, when a ISD::DECLARE node is selected, it has the side effect of also recording the variable. This is a short term solution that should be fixed in time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46659 91177308-0d34-0410-b5e6-96231b3b80d8
- Expand tabs... (poss 80-col violations, will get them later...)
- Consolidate logic for SelectDFormAddr and SelectDForm2Addr into a single
function, simplifying maintenance. Also reduced custom instruction
generation for SPUvecinsert/INSERT_MASK.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46544 91177308-0d34-0410-b5e6-96231b3b80d8
only two addressing mode nodes, SPUaform and SPUindirect (vice the
three previous ones, SPUaform, SPUdform and SPUxform). This improves
code somewhat because we now avoid using reg+reg addressing when
it can be avoided. It also simplifies the address selection logic,
which was the main point for doing this.
Also, for various global variables that would be loaded using SPU's
A-form addressing, prefer D-form offs[reg] addressing, keeping the
base in a register if the variable is used more than once.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46483 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed CellSPU's A-form (local store) address mode, so that all globals,
externals, constant pool and jump table symbols are now wrapped within
a SPUISD::AFormAddr pseudo-instruction. This now identifies all local
store memory addresses, although it requires a bit of legerdemain during
instruction selection to properly select loads to and stores from local
store, properly generating "LQA" instructions.
Also added mul_ops.ll test harness for exercising integer multiplication.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46142 91177308-0d34-0410-b5e6-96231b3b80d8
- struct_2.ll: Completely unaligned load/store testing
- call_indirect.ll, struct_1.ll: Add test lines to exercise
X-form [$reg($reg)] addressing
At this point, loads and stores should be under control (he says
in an optimistic tone of voice.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45882 91177308-0d34-0410-b5e6-96231b3b80d8
- Cleaned up custom load/store logic, common code is now shared [see note
below], cleaned up address modes
- More test cases: various intrinsics, structure element access (load/store
test), updated target data strings, indirect function calls.
Note: This patch contains a refactoring of the LoadSDNode and StoreSDNode
structures: they now share a common base class, LSBaseSDNode, that
provides an interface to their common functionality. There is some hackery
to access the proper operand depending on the derived class; otherwise,
to do a proper job would require finding and rearranging the SDOperands
sent to StoreSDNode's constructor. The current refactor errs on the
side of being conservatively and backwardly compatible while providing
functionality that reduces redundant code for targets where loads and
stores are custom-lowered.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45851 91177308-0d34-0410-b5e6-96231b3b80d8
that "machine" classes are used to represent the current state of
the code being compiled. Given this expanded name, we can start
moving other stuff into it. For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.
Update all the clients to match.
This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45467 91177308-0d34-0410-b5e6-96231b3b80d8