MachineInstr and MachineOperand. This required eliminating a
bunch of stuff that was using DOUT, I hope that bill doesn't
mind me stealing his fun. ;-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79813 91177308-0d34-0410-b5e6-96231b3b80d8
shouldn't do AU.setPreservesCFG(), because even though CodeGen passes
don't modify the LLVM IR CFG, they may modify the MachineFunction CFG,
and passes like MachineLoop are registered with isCFGOnly set to true.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77691 91177308-0d34-0410-b5e6-96231b3b80d8
failures when building assorted projects with clang.
--- Reverse-merging r77654 into '.':
U include/llvm/CodeGen/Passes.h
U include/llvm/CodeGen/MachineFunctionPass.h
U include/llvm/CodeGen/MachineFunction.h
U include/llvm/CodeGen/LazyLiveness.h
U include/llvm/CodeGen/SelectionDAGISel.h
D include/llvm/CodeGen/MachineFunctionAnalysis.h
U include/llvm/Function.h
U lib/Target/CellSPU/SPUISelDAGToDAG.cpp
U lib/Target/PowerPC/PPCISelDAGToDAG.cpp
U lib/CodeGen/LLVMTargetMachine.cpp
U lib/CodeGen/MachineVerifier.cpp
U lib/CodeGen/MachineFunction.cpp
U lib/CodeGen/PrologEpilogInserter.cpp
U lib/CodeGen/MachineLoopInfo.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
D lib/CodeGen/MachineFunctionAnalysis.cpp
D lib/CodeGen/MachineFunctionPass.cpp
U lib/CodeGen/LiveVariables.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77661 91177308-0d34-0410-b5e6-96231b3b80d8
EAX = ..., AX<imp-def>
...
= AX
This creates a double-def. Apparently this used to be necessary but is no longer needed.
Thanks to Anton for pointing this out. Anton, I cannot create a test case without your uncommitted ARM patches. Please check in a test case for me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72755 91177308-0d34-0410-b5e6-96231b3b80d8
entries as there are basic blocks in the function. LiveVariables::getVarInfo
creates a VarInfo struct for every register in the function, leading to
quadratic space use. This patch changes the BitVector to a SparseBitVector,
which doesn't help the worst-case memory use but does reduce the actual use in
very long functions with short-lived variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72426 91177308-0d34-0410-b5e6-96231b3b80d8
Handle{Virt,Phys}Reg{Def,Use}. Remove a redundant check
for register zero, and redundant checks for isPhysicalRegister.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56412 91177308-0d34-0410-b5e6-96231b3b80d8
- Add a basic machine-level dead block eliminator.
These two have to go together, since many other parts of the code generator are unable to handle the unreachable blocks otherwise created.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54333 91177308-0d34-0410-b5e6-96231b3b80d8
- Also remove LiveVariables::instructionChanged, etc. Replace all calls with cheaper calls which update VarInfo kill list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53097 91177308-0d34-0410-b5e6-96231b3b80d8
- CommuteInstruction copies kill / dead markers over to new instruction. So use replaceKillInstruction instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53061 91177308-0d34-0410-b5e6-96231b3b80d8
,------.
| |
| v
| t2 = phi ... t1 ...
| |
| v
| t1 = ...
| ... = ... t1 ...
| |
`------'
where there is a use in a PHI node that's a predecessor to the defining
block. We don't want to mark all predecessors as having the value "alive" in
this case. Also, the assert was too restrictive and didn't handle this case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52655 91177308-0d34-0410-b5e6-96231b3b80d8
1. If part of a register is re-defined, an implicit kill and an implicit def are added to denote read / mod / write. However, this should only be necessary if the register is actually read later. This is a performance issue.
2. If a sub-register is being defined, and it doesn't have a previous use, do not add a implicit kill to the last use of a super-register:
= EAX, AX<imp-use,kill>
...
AX =
In this case, EAX is live but AX is killed, this is wrong and will cause the coalescer to do bad things.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48521 91177308-0d34-0410-b5e6-96231b3b80d8
No need to go up more levels. A def of a register also sets its sub-registers
(so if PhysRegInfo[SuperReg] is NULL, it means SuperReg's super registers are
not previously defined).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47399 91177308-0d34-0410-b5e6-96231b3b80d8
that "machine" classes are used to represent the current state of
the code being compiled. Given this expanded name, we can start
moving other stuff into it. For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.
Update all the clients to match.
This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45467 91177308-0d34-0410-b5e6-96231b3b80d8
e.g. MO.isMBB() instead of MO.isMachineBasicBlock(). I don't plan on
switching everything over, so new clients should just start using the
shorter names.
Remove old long accessors, switching everything over to use the short
accessor: getMachineBasicBlock() -> getMBB(),
getConstantPoolIndex() -> getIndex(), setMachineBasicBlock -> setMBB(), etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45464 91177308-0d34-0410-b5e6-96231b3b80d8
- Eliminate the static "print" method for operands, moving it
into MachineOperand::print.
- Change various set* methods for register flags to take a bool
for the value to set it to. Remove unset* methods.
- Group methods more logically by operand flavor in MachineOperand.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45461 91177308-0d34-0410-b5e6-96231b3b80d8
When a live interval is being spilled, rather than creating short, non-spillable
intervals for every def / use, split the interval at BB boundaries. That is, for
every BB where the live interval is defined or used, create a new interval that
covers all the defs and uses in the BB.
This is designed to eliminate one common problem: multiple reloads of the same
value in a single basic block. Note, it does *not* decrease the number of spills
since no copies are inserted so the split intervals are *connected* through
spill and reloads (or rematerialization). The newly created intervals can be
spilled again, in that case, since it does not span multiple basic blocks, it's
spilled in the usual manner. However, it can reuse the same stack slot as the
previously split interval.
This is currently controlled by -split-intervals-at-bb.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44198 91177308-0d34-0410-b5e6-96231b3b80d8