Commit Graph

10697 Commits

Author SHA1 Message Date
Chandler Carruth
fdaf59e9b1 [x86] Explicitly lower to a blend early if it is trivial to do so for
v8f32 shuffles in the new vector shuffle lowering code.

This is very cheap to do and makes it much more clear that anything more
expensive but overlapping with this lowering should be selected
afterward (for example using AVX2's VPERMPS). However, no functionality
changed here as without this code we would fall through to create no-op
shuffles of each input and a blend. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218209 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 11:40:39 +00:00
Chandler Carruth
29720a4bad [x86] Teach the new vector shuffle lowering of v4f64 to prefer a direct
VBLENDPD over using VSHUFPD. While the 256-bit variant of VBLENDPD slows
down to the same speed as VSHUFPD on Sandy Bridge CPUs, it has twice the
reciprocal throughput on Ivy Bridge CPUs much like it does everywhere
for 128-bits. There isn't a downside, so just eagerly use this
instruction when it suffices.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218208 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 11:17:55 +00:00
Chandler Carruth
25089558f2 [x86] Switch the blend implementation to use a MVT switch rather than
awkward conditions. The readability improvement of this will be even
more important as I generalize it to handle more types.

No functionality changed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218205 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 10:36:12 +00:00
Chandler Carruth
4127d76566 [x86] Remove some essentially lying comments from the v4f64 path of the
new vector shuffle lowering.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218204 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 10:27:14 +00:00
Chandler Carruth
05a8a724e2 [x86] Fix a helper to reflect that what we actually care about is
128-bit lane crossings, not 'half' crossings. This came up in code
review ages ago, but I hadn't really addresesd it. Also added some
documentation for the helper.

No functionality changed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218203 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 09:35:25 +00:00
Chandler Carruth
291140b112 [x86] Teach the new vector shuffle lowering the first step toward more
actual support for complex AVX shuffling tricks. We can do independent
blends of the low and high 128-bit lanes of an avx vector, so shuffle
the inputs into place and then do the blend at 256 bits. This will in
many cases remove one blend instruction.

The next step is to permute the low and high halves in-place rather than
extracting them and re-inserting them.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218202 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 09:35:22 +00:00
Chandler Carruth
ae464b2ba1 [x86] Teach the new vector shuffle lowering to use VPERMILPD for
single-input shuffles with doubles. This allows them to fold memory
operands into the shuffle, etc. This is just the analog to the v4f32
case in my prior commit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218193 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-20 22:09:27 +00:00
Chandler Carruth
9c7ffd20df [x86] Teach the new vector shuffle lowering to use the AVX VPERMILPS
instruction for single-vector floating point shuffles. This in turn
allows the shuffles to fold a load into the instruction which is one of
the common regressions hit with the new shuffle lowering.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218190 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-20 20:52:07 +00:00
Chandler Carruth
c16105b078 [x86] Teach the v4f32 path of the new shuffle lowering to handle the
tricky case of single-element insertion into the zero lane of a zero
vector.

We can't just use the same pattern here as we do in every other vector
type because the general insertion logic can handle insertion into the
non-zero lane of the vector. However, in SSE4.1 with v4f32 vectors we
have INSERTPS that is a much better choice than the generic one for such
lowerings. But INSERTPS can do lots of other lowerings as well so
factoring its logic into the general insertion logic doesn't work very
well. We also can't just extract the core common part of the general
insertion logic that is faster (forming VZEXT_MOVL synthetic nodes that
lower to MOVSS when they can) because VZEXT_MOVL is often *faster* than
a blend while INSERTPS is slower! So instead we do a restrictive
condition on attempting to use the generic insertion logic to narrow it
to those cases where VZEXT_MOVL won't need a shuffle afterward and thus
will do better than INSERTPS. Then we try blending. Then we go back to
INSERTPS.

This still doesn't generate perfect code for some silly reasons that can
be fixed by tweaking the td files for lowering VZEXT_MOVL to use
XORPS+BLENDPS when available rather than XORPS+MOVSS when the input ends
up in a register rather than a load from memory -- BLENDPSrr has twice
the reciprocal throughput of MOVSSrr. Don't you love this ISA?

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218177 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-20 04:15:22 +00:00
Chandler Carruth
9ba9f1a7e6 [x86] Refactor the code for emitting INSERTPS to reuse the zeroable mask
analysis used elsewhere. This removes the last duplicate of this logic.
Also simplify the code here quite a bit. No functionality changed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218176 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-20 03:57:01 +00:00
Chandler Carruth
cc62abbe39 [x86] Generalize the single-element insertion lowering to work with
floating point types and use it for both v2f64 and v2i64 single-element
insertion lowering.

This fixes the last non-AVX performance regression test case I've gotten
of for the new vector shuffle lowering. There is obvious analogous
lowering for v4f32 that I'll add in a follow-up patch (because with
INSERTPS, v4f32 requires special treatment). After that, its AVX stuff.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218175 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-20 03:32:25 +00:00
Chandler Carruth
8924ed3db4 [x86] Replace some duplicated logic reasoning about whether particular
vector lanes can be modeled as zero with a call to the new function that
computes a bit-vector representing that information.

No functionality changed here, but will allow doing more clever things
with the zero-test.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218174 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-20 02:44:21 +00:00
Robin Morisset
613c7d0b35 [X86] Erase some obsolete comments from README.txt
I just tried reproducing some of the optimization failures in README.txt in the
X86 backend, and many of them could not be reproduced. In general the entire
file appears quite bit-rotted, whatever interesting parts remain should be
moved to bugzilla, and the rest deleted. I did not spend the time to do that,
so I just deleted the few I tried reproducing which are obsolete, to save some
time to whoever will find the courage to do it.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218170 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-19 23:56:46 +00:00
Chandler Carruth
f7ca3552ff [x86] Hoist a function up to the rest of the non-type-specific lowering
helpers, and re-flow the logic to use early exit and be a bit more
readable.

No functionality changed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218155 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-19 21:52:10 +00:00
Chandler Carruth
401b720aa8 [x86] Hoist the actual lowering logic into a helper function to separate
it from the shuffle pattern matching logic.

Also cleaned up variable names, comments, etc. No functionality changed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218152 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-19 21:20:08 +00:00
Chandler Carruth
dc58d1e099 [x86] Fully generalize the zext lowering in the new vector shuffle
lowering to support both anyext and zext and to custom lower for many
different microarchitectures.

Using this allows us to get *exactly* the right code for zext and anyext
shuffles in all the vector sizes. For v16i8, the improvement is *huge*.
The new SSE2 test case added I refused to add before this because it was
sooooo muny instructions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218143 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-19 20:00:32 +00:00
Chandler Carruth
89436b4160 [x86] Recognize that we can use duplication to widen v16i8 shuffles due
to undef lanes as well as defined widenable lanes. This dramatically
improves the lowering we use for undef-shuffles in a zext-ish pattern
for SSE2.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218115 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-19 09:45:21 +00:00
Chandler Carruth
ec1f7b1c87 [x86] Teach the new vector shuffle lowering to also use pmovzx for v4i32
shuffles that are zext-ing.

Not a lot to see here; the undef lane variant is better handled with
pshufd, but this improves the actual zext pattern.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218112 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-19 08:37:44 +00:00
Chandler Carruth
330aa6fd6b [x86] Add a dedicated lowering path for zext-compatible vector shuffles
to the new vector shuffle lowering code.

This allows us to emit PMOVZX variants consistently for patterns where
it is a viable lowering. This instruction is both fast and allows us to
fold loads into it. This only hooks the new lowering up for i16 and i8
element widths, mostly so I could manage the change to the tests. I'll
add the i32 one next, although it is significantly less interesting.

One thing to note is that we already had some tests for these patterns
but those tests had far less horrible instructions. The problem is that
those tests weren't checking the strict start and end of the instruction
sequence. =[ As a consequence something changed in the lowering making
us generate *TERRIBLE* code for these patterns in SSE2 through SSSE3.
I've consolidated all of the tests and spelled out the madness that we
currently emit for these shuffles. I'm going to try to figure out what
has gone wrong here.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218102 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-19 06:07:49 +00:00
Aaron Ballman
c21e4e197d Reverting NFC changes from r218050. Instead, the warning was disabled for GCC in r218059, so these changes are no longer required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218062 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-18 17:34:23 +00:00
Robert Khasanov
262d57d578 [SKX] Deriving rmb multiclasses from general one (avx512_icmp_packed_rmb and avx512_icmp_cc_rmb).
Thanks Adam Nemet for notice about this.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218051 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-18 14:06:55 +00:00
Aaron Ballman
cf5bea8e4a Fixing a bunch of -Woverloaded-virtual warnings due to hiding getSubtargetImpl from the base class. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218050 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-18 13:27:14 +00:00
Chandler Carruth
72f0d9515e [x86] Use PALIGNR for v4i32 and v2i64 blends when appropriate.
There is no purpose in using it for single-input shuffles as
pshufd is just as fast and doesn't tie the two operands. This removes
a substantial amount of wrong-domain blend operations in SSSE3 mode. It
also completes the usage of PALIGNR for integer shuffles and addresses
one of the test cases Quentin hit with the new vector shuffle lowering.

There is still the question of whether and when to use this for floating
point shuffles. It is faster than shufps or shufpd but in the integer
domain. I don't yet really have a good heuristic here for when to use
this instruction for floating point vectors.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218038 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-18 09:00:25 +00:00
Chandler Carruth
3ff76847ba [x86] Initial step of teaching the new vector shuffle lowering about
PALIGNR. This just adds it to the v8i16 and v16i8 lowering steps where
it is completely unmatched. It also introduces the logic for detecting
rotation shuffle masks even in the presence of single input or blend
masks and arbitrarily undef lanes.

I've added fairly comprehensive tests for the matching logic in v8i16
because the tests at that size are much easier to write and manage.

I've not checked the SSE2 code generated for these tests because the
code is *horrible*. It is absolute madness. Testing it will just make
the test brittle without giving any interesting improvements in the
correctness confidence.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218013 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-18 04:11:29 +00:00
Yaron Keren
c63035aa56 Add and update reset() and doInitialization() methods to MC* and passes.
This enables reusing a PassManager instead of re-constructing it every time.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217948 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-17 09:25:36 +00:00
Pavel Chupin
780f7e2168 [x32] Fix function indirect calls
Summary: Zero-extend register to 64-bit for callq/jmpq.

Test Plan: 3 tests added

Reviewers: nadav, dschuff

Subscribers: llvm-commits, zinovy.nis

Differential Revision: http://reviews.llvm.org/D5355

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217942 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-17 07:09:23 +00:00
Robin Morisset
5c16c4e45a [X86] Use the generic AtomicExpandPass instead of X86AtomicExpandPass
This required a new hook called hasLoadLinkedStoreConditional to know whether
to expand atomics to LL/SC (ARM, AArch64, in a future patch Power) or to
CmpXchg (X86).

Apart from that, the new code in AtomicExpandPass is mostly moved from
X86AtomicExpandPass. The main result of this patch is to get rid of that
pass, which had lots of code duplicated with AtomicExpandPass.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217928 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-17 00:06:58 +00:00
Adam Nemet
7cb345ea87 [X86] Improve comment
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217885 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-16 17:14:10 +00:00
Elena Demikhovsky
0218e1e1da AVX-512: added cost for some AVX-512 instructions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217863 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-16 07:57:37 +00:00
Chandler Carruth
07b445aff7 [x86] Remove a FIXME that doesn't make any sense. Only the lanes feeding
the blend that is matched by this are "used" in any sense, and so any
build_vector or other nodes feeding these will already drop other lanes.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217855 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-16 02:16:42 +00:00
Chandler Carruth
2f21b7ec5c [x86] Cleanup an unused variable by actually using it in the non-asserts
place where it was needed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217854 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-16 02:14:51 +00:00
Chandler Carruth
2e363ece75 [x86] Remove the last vestiges of the BLENDI-based ADDSUB pattern
matching. This design just fundamentally didn't work because ADDSUB is
available prior to any legal lowerings of BLENDI nodes. Instead, we have
a dedicated ADDSUB synthetic ISD node which is pattern matched trivially
into the instructions. These nodes are then recognized by both the
existing and a trivial new lowering combine in the backend. Removing
these patterns required adding 2 missing shuffle masks to the DAG
combine, without which tests would have failed. Added the masks and
a helpful assert as well to catch if anything ever goes wrong here.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217851 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-16 00:39:08 +00:00
Chandler Carruth
bad2c13aae [x86] As a follow-up to r217819, don't check for VSELECT legality now
that we don't use VSELECT and directly emit an addsub synthetic node.
Also remove a stale comment referencing VSELECT.

The test case is updated to use 'core2' which only has SSE3, not SSE4.1,
and it still passes. Previously it would not because we lacked
sufficient blend support to legalize the VSELECT.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217849 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-16 00:24:42 +00:00
Chandler Carruth
cba9d1273a [x86] Add the beginnings of a proper DAG combine to match ADDSUBPS and
ADDSUBPD nodes out of blends of adds and subs.

This allows us to actually form these instructions with SSE3 rather than
only forming them when we had both SSE3 for the ADDSUB instructions and
SSE4.1 for the blend instructions. ;] Kind-of important.

I've adjusted the CPU requirements on one of the tests to demonstrate
this kicking in nicely for an SSE3 cpu configuration.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217848 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-16 00:15:20 +00:00
Juergen Ributzka
1ee1e8bdc2 [FastISel] Move optimizeCmpPredicate to FastISel base class. NFC.
Make the optimizeCmpPredicate function available to all targets.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217822 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 20:47:13 +00:00
Chandler Carruth
fa6cf7e73c [x86] Start fixing our emission of ADDSUBPS and ADDSUBPD instructions by
introducing a synthetic X86 ISD node representing this generic
operation.

The relevant patterns for mapping these nodes into the concrete
instructions are also added, and a gnarly bit of C++ code in the
target-specific DAG combiner is replaced with simple code emitting this
primitive.

The next step is to generically combine blends of adds and subs into
this node so that we can drop the reliance on an SSE4.1 ISD node
(BLENDI) when matching an SSE3 feature (ADDSUB).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217819 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 20:09:47 +00:00
Akira Hatanaka
348e9e7b6d [X86] Fix a bug in X86's peephole optimization.
Peephole optimization was folding MOVSDrm, which is a zero-extending double
precision floating point load, into ADDPDrr, which is a SIMD add of two packed
double precision floating point values.

(before)
%vreg21<def> = MOVSDrm <fi#0>, 1, %noreg, 0, %noreg; mem:LD8[%7](align=16)(tbaa=<badref>) VR128:%vreg21
%vreg23<def,tied1> = ADDPDrr %vreg20<tied0>, %vreg21; VR128:%vreg23,%vreg20,%vreg21

(after)
%vreg23<def,tied1> = ADDPDrm %vreg20<tied0>, <fi#0>, 1, %noreg, 0, %noreg; mem:LD8[%7](align=16)(tbaa=<badref>) VR128:%vreg23,%vreg20

X86InstrInfo::foldMemoryOperandImpl already had the logic that prevented this
from happening. However the check wasn't being conducted for loads from stack
objects. This commit factors out the logic into a new function and uses it for
checking loads from stack slots are not zero-extending loads.

rdar://problem/18236850


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217799 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 18:23:52 +00:00
Chandler Carruth
c5371836a5 [x86] Begin emitting PBLENDW instructions for integer blend operations
when SSE4.1 is available.

This removes a ton of domain crossing from blend code paths that were
ending up in the floating point code path.

This is just the tip of the iceberg though. The real switch is for
integer blend lowering to more actively rely on this instruction being
available so we don't hit shufps at all any longer. =] That will come in
a follow-up patch.

Another place where we need better support is for using PBLENDVB when
doing so avoids the need to have two complementary PSHUFB masks.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217767 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 12:40:54 +00:00
Chandler Carruth
2fdec16fbe [x86] Teach the x86 DAG combiner to form UNPCKLPS and UNPCKHPS
instructions from the relevant shuffle patterns.

This is the last tweak I'm aware of to generate essentially perfect
v4f32 and v2f64 shuffles with the new vector shuffle lowering up through
SSE4.1. I'm sure I've missed some and it'd be nice to check since v4f32
is amenable to exhaustive exploration, but this is all of the tricks I'm
aware of.

With AVX there is a new trick to use the VPERMILPS instruction, that's
coming up in a subsequent patch.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217761 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 11:26:25 +00:00
Chandler Carruth
08780d4c1d [x86] Teach the x86 DAG combiner to form MOVSLDUP and MOVSHDUP
instructions when it finds an appropriate pattern.

These are lovely instructions, and its a shame to not use them. =] They
are fast, and can hand loads folded into their operands, etc.

I've also plumbed the comment shuffle decoding through the various
layers so that the test cases are printed nicely.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217758 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 11:15:23 +00:00
Chandler Carruth
04402a6c13 [x86] Undo a flawed transform I added to form UNPCK instructions when
AVX is available, and generally tidy up things surrounding UNPCK
formation.

Originally, I was thinking that the only advantage of PSHUFD over UNPCK
instruction variants was its free copy, and otherwise we should use the
shorter encoding UNPCK instructions. This isn't right though, there is
a larger advantage of being able to fold a load into the operand of
a PSHUFD. For UNPCK, the operand *must* be in a register so it can be
the second input.

This removes the UNPCK formation in the target-specific DAG combine for
v4i32 shuffles. It also lifts the v8 and v16 cases out of the
AVX-specific check as they are potentially replacing multiple
instructions with a single instruction and so should always be valuable.
The floating point checks are simplified accordingly.

This also adjusts the formation of PSHUFD instructions to attempt to
match the shuffle mask to one which would fit an UNPCK instruction
variant. This was originally motivated to allow it to match the UNPCK
instructions in the combiner, but clearly won't now.

Eventually, we should add a MachineCombiner pass that can form UNPCK
instructions post-RA when the operand is known to be in a register and
thus there is no loss.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217755 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 10:35:41 +00:00
Chandler Carruth
a6cc351c5b [x86] Teach the new vector shuffle lowering to use 'punpcklwd' and
'punpckhwd' instructions when suitable rather than falling back to the
generic algorithm.

While we could canonicalize to these patterns late in the process, that
wouldn't help when the freedom to use them is only visible during
initial lowering when undef lanes are well understood. This, it turns
out, is very important for matching the shuffle patterns that are used
to lower sign extension. Fixes a small but relevant regression in
gcc-loops with the new lowering.

When I changed this I noticed that several 'pshufd' lowerings became
unpck variants. This is bad because it removes the ability to freely
copy in the same instruction. I've adjusted the widening test to handle
undef lanes correctly and now those will correctly continue to use
'pshufd' to lower. However, this caused a bunch of churn in the test
cases. No functional change, just churn.

Both of these changes are part of addressing a general weakness in the
new lowering -- it doesn't sufficiently leverage undef lanes. I've at
least a couple of patches that will help there at least in an academic
sense.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217752 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 09:02:37 +00:00
Chandler Carruth
e610c324e1 [x86] Teach the new vector shuffle lowering to use BLENDPS and BLENDPD.
These are super simple. They even take precedence over crazy
instructions like INSERTPS because they have very high throughput on
modern x86 chips.

I still have to teach the integer shuffle variants about this to avoid
so many domain crossings. However, due to the particular instructions
available, that's a touch more complex and so a separate patch.

Also, the backend doesn't seem to realize it can commute blend
instructions by negating the mask. That would help remove a number of
copies here. Suggestions on how to do this welcome, it's an area I'm
less familiar with.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217744 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-14 23:43:33 +00:00
Chandler Carruth
33957173a7 [x86] Teach the vector combiner that picks a canonical shuffle from to
support transforming the forms from the new vector shuffle lowering to
use 'movddup' when appropriate.

A bunch of the cases where we actually form 'movddup' don't actually
show up in the test results because something even later than DAG
legalization maps them back to 'unpcklpd'. If this shows back up as
a performance problem, I'll probably chase it down, but it is at least
an encoded size loss. =/

To make this work, also always do this canonicalizing step for floating
point vectors where the baseline shuffle instructions don't provide any
free copies of their inputs. This also causes us to canonicalize
unpck[hl]pd into mov{hl,lh}ps (resp.) which is a nice encoding space
win.

There is one test which is "regressed" by this: extractelement-load.
There, the test case where the optimization it is testing *fails*, the
exact instruction pattern which results is slightly different. This
should probably be fixed by having the appropriate extract formed
earlier in the DAG, but that would defeat the purpose of the test.... If
this test case is critically important for anyone, please let me know
and I'll try to work on it. The prior behavior was actually contrary to
the comment in the test case and seems likely to have been an accident.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217738 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-14 22:41:37 +00:00
Yaron Keren
0f39f35425 The MCAssembler.h include isn't used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217705 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-12 20:29:17 +00:00
Adam Nemet
49f31255be [AVX512] Fix miscompile for unpack
r189189 implemented AVX512 unpack by essentially performing a 256-bit unpack
between the low and the high 256 bits of src1 into the low part of the
destination and another unpack of the low and high 256 bits of src2 into the
high part of the destination.

I don't think that's how unpack works.  AVX512 unpack simply has more 128-bit
lanes but other than it works the same way as AVX.  So in each 128-bit lane,
we're always interleaving certain parts of both operands rather different
parts of one of the operands.

E.g. for this:
__v16sf a = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
__v16sf b = { 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 };
__v16sf c = __builtin_shufflevector(a, b, 0, 8, 1, 9, 4, 12, 5, 13, 16,
	    			       	     24, 17, 25, 20, 28, 21, 29);

we generated punpcklps (notice how the elements of a and b are not interleaved
in the shuffle).  In turn, c was set to this:

  0 16 1 17 4 20 5 21 8 24 9 25 12 28 13 29

Obviously this should have just returned the mask vector of the shuffle
vector.

I mostly reverted this change and made sure the original AVX code worked
for 512-bit vectors as well.

Also updated the tests because they matched the logic from the code.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217602 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-11 16:51:10 +00:00
Benjamin Kramer
db414b01a3 Move constant-sized bitvector to the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217600 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-11 15:58:39 +00:00
Sanjay Patel
87c977a52b Rename getMaximumUnrollFactor -> getMaxInterleaveFactor; also rename option names controlling this variable.
"Unroll" is not the appropriate name for this variable. Clang already uses 
the term "interleave" in pragmas and metadata for this.

Differential Revision: http://reviews.llvm.org/D5066



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217528 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-10 17:58:16 +00:00
Yuri Gorshenin
ca31084292 [asan-assembly-instrumentation] Added CFI directives to the generated instrumentation code.
Summary: [asan-assembly-instrumentation] Added CFI directives to the generated instrumentation code.

Reviewers: eugenis

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5189

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217482 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-10 09:45:49 +00:00
Sanjay Patel
a9d7398280 Add a scheduling model for AMD 16H Jaguar (btver2).
This is a first pass at a scheduling model for Jaguar.
It's structured largely on the existing SandyBridge and SLM sched models.

Using this model, in addition to turning on the PostRA scheduler, results in 
some perf wins on internal and 3rd party benchmarks. There's not much difference 
in LLVM's test-suite benchmarking subset of tests.

Differential Revision: http://reviews.llvm.org/D5229



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217457 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-09 20:07:07 +00:00