llvm-6502/lib/CodeGen
Sanjay Patel cae9695fbb [X86, AVX2] Replace inserti128 and extracti128 intrinsics with generic shuffles
This should complete the job started in r231794 and continued in r232045:
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.

AVX2 introduced proper integer variants of the hacked integer insert/extract
C intrinsics that were created for this same functionality with AVX1.

This should complete the removal of insert/extract128 intrinsics.

The Clang precursor patch for this change was checked in at r232109.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232120 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-12 23:16:18 +00:00
..
AsmPrinter [NVPTXAsmPrinter] do not print .align on function headers 2015-03-12 01:50:30 +00:00
SelectionDAG [X86, AVX2] Replace inserti128 and extracti128 intrinsics with generic shuffles 2015-03-12 23:16:18 +00:00
AggressiveAntiDepBreaker.cpp
AggressiveAntiDepBreaker.h
AllocationOrder.cpp
AllocationOrder.h
Analysis.cpp
AntiDepBreaker.h
AtomicExpandPass.cpp
BasicTargetTransformInfo.cpp
BranchFolding.cpp Don't evaluate rend() on every iteration of the loop. 2015-03-10 20:29:59 +00:00
BranchFolding.h
CalcSpillWeights.cpp
CallingConvLower.cpp
CMakeLists.txt
CodeGen.cpp Reland r229944: EH: Prune unreachable resume instructions during Dwarf EH preparation 2015-03-09 22:45:16 +00:00
CodeGenPrepare.cpp [CodeGenPrepare] Refine the cost model provided by the promotion helper. 2015-03-10 21:48:15 +00:00
CriticalAntiDepBreaker.cpp
CriticalAntiDepBreaker.h
DeadMachineInstructionElim.cpp
DFAPacketizer.cpp
DwarfEHPrepare.cpp Stop calling DwarfEHPrepare from WinEHPrepare 2015-03-12 00:36:20 +00:00
EarlyIfConversion.cpp
EdgeBundles.cpp
ErlangGC.cpp
ExecutionDepsFix.cpp ExecutionDepsFix: Indizes -> Indices. 2015-03-06 18:56:20 +00:00
ExpandISelPseudos.cpp
ExpandPostRAPseudos.cpp
GCMetadata.cpp
GCMetadataPrinter.cpp
GCRootLowering.cpp
GCStrategy.cpp
GlobalMerge.cpp
IfConversion.cpp Simplify expressions involving boolean constants with clang-tidy 2015-03-09 01:57:13 +00:00
InlineSpiller.cpp
InterferenceCache.cpp Make static variables const if possible. Makes them go into a read-only section. 2015-03-08 16:07:39 +00:00
InterferenceCache.h Make static variables const if possible. Makes them go into a read-only section. 2015-03-08 16:07:39 +00:00
IntrinsicLowering.cpp
LatencyPriorityQueue.cpp
LexicalScopes.cpp
LiveDebugVariables.cpp
LiveDebugVariables.h
LiveInterval.cpp
LiveIntervalAnalysis.cpp
LiveIntervalUnion.cpp
LivePhysRegs.cpp
LiveRangeCalc.cpp
LiveRangeCalc.h
LiveRangeEdit.cpp
LiveRegMatrix.cpp
LiveStackAnalysis.cpp
LiveVariables.cpp
LLVMBuild.txt
LLVMTargetMachine.cpp Move the DataLayout to the generic TargetMachine, making it mandatory. 2015-03-12 00:07:24 +00:00
LocalStackSlotAllocation.cpp
MachineBasicBlock.cpp
MachineBlockFrequencyInfo.cpp
MachineBlockPlacement.cpp [MBP] Use range based for-loops throughout this code. Several had 2015-03-05 03:19:05 +00:00
MachineBranchProbabilityInfo.cpp
MachineCombiner.cpp
MachineCopyPropagation.cpp
MachineCSE.cpp
MachineDominanceFrontier.cpp
MachineDominators.cpp
MachineFunction.cpp DataLayout is mandatory, update the API to reflect it with references. 2015-03-10 02:37:25 +00:00
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp
MachineInstrBundle.cpp
MachineLICM.cpp
MachineLoopInfo.cpp
MachineModuleInfo.cpp
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachinePostDominators.cpp
MachineRegionInfo.cpp
MachineRegisterInfo.cpp Have TargetRegisterInfo::getLargestLegalSuperClass take a 2015-03-10 23:46:01 +00:00
MachineScheduler.cpp Remove useMachineScheduler and replace it with subtarget options 2015-03-11 22:56:10 +00:00
MachineSink.cpp
MachineSSAUpdater.cpp
MachineTraceMetrics.cpp
MachineVerifier.cpp Have TargetRegisterInfo::getLargestLegalSuperClass take a 2015-03-10 23:46:01 +00:00
Makefile
module.modulemap
OcamlGC.cpp
OptimizePHIs.cpp
Passes.cpp Remove unused headers. 2015-03-12 21:04:42 +00:00
PeepholeOptimizer.cpp Simplify expressions involving boolean constants with clang-tidy 2015-03-09 01:57:13 +00:00
PHIElimination.cpp
PHIEliminationUtils.cpp
PHIEliminationUtils.h
PostRASchedulerList.cpp
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp Replace llvm.frameallocate with llvm.frameescape 2015-03-05 18:26:34 +00:00
PrologEpilogInserter.h
PseudoSourceValue.cpp
README.txt
RegAllocBase.cpp
RegAllocBase.h
RegAllocBasic.cpp
RegAllocFast.cpp
RegAllocGreedy.cpp Have TargetRegisterInfo::getLargestLegalSuperClass take a 2015-03-10 23:46:01 +00:00
RegAllocPBQP.cpp [PBQP] Use a local bit-matrix to speedup searching an edge in the graph. 2015-03-05 09:12:59 +00:00
RegisterClassInfo.cpp Have getRegPressureSetLimit take a MachineFunction so that a 2015-03-11 18:34:58 +00:00
RegisterCoalescer.cpp Remove useMachineScheduler and replace it with subtarget options 2015-03-11 22:56:10 +00:00
RegisterCoalescer.h
RegisterPressure.cpp
RegisterScavenging.cpp
ScheduleDAG.cpp
ScheduleDAGInstrs.cpp DataLayout is mandatory, update the API to reflect it with references. 2015-03-10 02:37:25 +00:00
ScheduleDAGPrinter.cpp
ScoreboardHazardRecognizer.cpp
ShadowStackGC.cpp
ShadowStackGCLowering.cpp
SjLjEHPrepare.cpp
SlotIndexes.cpp
Spiller.h
SpillPlacement.cpp
SpillPlacement.h
SplitKit.cpp
SplitKit.h
StackColoring.cpp
StackMapLivenessAnalysis.cpp
StackMaps.cpp
StackProtector.cpp
StackSlotColoring.cpp
StatepointExampleGC.cpp
TailDuplication.cpp
TargetFrameLoweringImpl.cpp
TargetInstrInfo.cpp
TargetLoweringBase.cpp DataLayout is mandatory, update the API to reflect it with references. 2015-03-10 02:37:25 +00:00
TargetLoweringObjectFileImpl.cpp Put jump tables in unique sections on COFF. 2015-03-11 19:58:37 +00:00
TargetOptionsImpl.cpp
TargetRegisterInfo.cpp
TargetSchedule.cpp
TwoAddressInstructionPass.cpp
UnreachableBlockElim.cpp
VirtRegMap.cpp
WinEHPrepare.cpp Make llvm.eh.actions an intrinsic and add docs for it 2015-03-12 01:45:37 +00:00

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str r4, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelihood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvements:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.