llvm-6502/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp

1593 lines
54 KiB
C++
Raw Normal View History

//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Evan Cheng and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements bottom-up and top-down register pressure reduction list
// schedulers, using standard algorithms. The basic approach uses a priority
// queue of available nodes to schedule. One at a time, nodes are taken from
// the priority queue (thus in priority order), checked for legality to
// schedule, and emitted if legal.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include <climits>
#include <queue>
#include "llvm/Support/CommandLine.h"
using namespace llvm;
STATISTIC(NumBacktracks, "Number of times scheduler backtraced");
STATISTIC(NumUnfolds, "Number of nodes unfolded");
STATISTIC(NumDups, "Number of duplicated nodes");
STATISTIC(NumCCCopies, "Number of cross class copies");
static RegisterScheduler
burrListDAGScheduler("list-burr",
" Bottom-up register reduction list scheduling",
createBURRListDAGScheduler);
static RegisterScheduler
tdrListrDAGScheduler("list-tdrr",
" Top-down register reduction list scheduling",
createTDRRListDAGScheduler);
namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGRRList - The actual register reduction list scheduler
/// implementation. This supports both top-down and bottom-up scheduling.
///
class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
private:
/// isBottomUp - This is true if the scheduling problem is bottom-up, false if
/// it is top-down.
bool isBottomUp;
/// AvailableQueue - The priority queue to use for the available SUnits.
///a
SchedulingPriorityQueue *AvailableQueue;
/// LiveRegs / LiveRegDefs - A set of physical registers and their definition
/// that are "live". These nodes must be scheduled before any other nodes that
/// modifies the registers can be scheduled.
SmallSet<unsigned, 4> LiveRegs;
std::vector<SUnit*> LiveRegDefs;
std::vector<unsigned> LiveRegCycles;
public:
ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
const TargetMachine &tm, bool isbottomup,
SchedulingPriorityQueue *availqueue)
: ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
AvailableQueue(availqueue) {
}
~ScheduleDAGRRList() {
delete AvailableQueue;
}
void Schedule();
private:
void ReleasePred(SUnit*, bool, unsigned);
void ReleaseSucc(SUnit*, bool isChain, unsigned);
void CapturePred(SUnit*, SUnit*, bool);
void ScheduleNodeBottomUp(SUnit*, unsigned);
void ScheduleNodeTopDown(SUnit*, unsigned);
void UnscheduleNodeBottomUp(SUnit*);
void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
SUnit *CopyAndMoveSuccessors(SUnit*);
void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
const TargetRegisterClass*,
const TargetRegisterClass*,
SmallVector<SUnit*, 2>&);
bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
void ListScheduleTopDown();
void ListScheduleBottomUp();
void CommuteNodesToReducePressure();
};
} // end anonymous namespace
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGRRList::Schedule() {
DOUT << "********** List Scheduling **********\n";
LiveRegDefs.resize(MRI->getNumRegs(), NULL);
LiveRegCycles.resize(MRI->getNumRegs(), 0);
// Build scheduling units.
BuildSchedUnits();
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(&DAG));
CalculateDepths();
CalculateHeights();
AvailableQueue->initNodes(SUnitMap, SUnits);
// Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
if (isBottomUp)
ListScheduleBottomUp();
else
ListScheduleTopDown();
AvailableQueue->releaseState();
CommuteNodesToReducePressure();
DOUT << "*** Final schedule ***\n";
DEBUG(dumpSchedule());
DOUT << "\n";
// Emit in scheduled order
EmitSchedule();
}
/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
/// it is not the last use of its first operand, add it to the CommuteSet if
/// possible. It will be commuted when it is translated to a MI.
void ScheduleDAGRRList::CommuteNodesToReducePressure() {
SmallPtrSet<SUnit*, 4> OperandSeen;
for (unsigned i = Sequence.size()-1; i != 0; --i) { // Ignore first node.
SUnit *SU = Sequence[i];
if (!SU || !SU->Node) continue;
if (SU->isCommutable) {
unsigned Opc = SU->Node->getTargetOpcode();
unsigned NumRes = TII->getNumDefs(Opc);
unsigned NumOps = CountOperands(SU->Node);
for (unsigned j = 0; j != NumOps; ++j) {
if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) == -1)
continue;
SDNode *OpN = SU->Node->getOperand(j).Val;
SUnit *OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
if (OpSU && OperandSeen.count(OpSU) == 1) {
// Ok, so SU is not the last use of OpSU, but SU is two-address so
// it will clobber OpSU. Try to commute SU if no other source operands
// are live below.
bool DoCommute = true;
for (unsigned k = 0; k < NumOps; ++k) {
if (k != j) {
OpN = SU->Node->getOperand(k).Val;
OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
if (OpSU && OperandSeen.count(OpSU) == 1) {
DoCommute = false;
break;
}
}
}
if (DoCommute)
CommuteSet.insert(SU->Node);
}
// Only look at the first use&def node for now.
break;
}
}
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (!I->isCtrl)
OperandSeen.insert(I->Dep);
}
}
}
//===----------------------------------------------------------------------===//
// Bottom-Up Scheduling
//===----------------------------------------------------------------------===//
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
unsigned CurCycle) {
// FIXME: the distance between two nodes is not always == the predecessor's
// latency. For example, the reader can very well read the register written
// by the predecessor later than the issue cycle. It also depends on the
// interrupt model (drain vs. freeze).
PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
--PredSU->NumSuccsLeft;
#ifndef NDEBUG
if (PredSU->NumSuccsLeft < 0) {
cerr << "*** List scheduling failed! ***\n";
PredSU->dump(&DAG);
cerr << " has been released too many times!\n";
assert(0);
}
#endif
if (PredSU->NumSuccsLeft == 0) {
// EntryToken has to go last! Special case it here.
if (!PredSU->Node || PredSU->Node->getOpcode() != ISD::EntryToken) {
PredSU->isAvailable = true;
AvailableQueue->push(PredSU);
}
}
}
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
DOUT << "*** Scheduling [" << CurCycle << "]: ";
DEBUG(SU->dump(&DAG));
SU->Cycle = CurCycle;
AvailableQueue->ScheduledNode(SU);
// Bottom up: release predecessors
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
ReleasePred(I->Dep, I->isCtrl, CurCycle);
if (I->Cost < 0) {
// This is a physical register dependency and it's impossible or
// expensive to copy the register. Make sure nothing that can
// clobber the register is scheduled between the predecessor and
// this node.
if (LiveRegs.insert(I->Reg)) {
LiveRegDefs[I->Reg] = I->Dep;
LiveRegCycles[I->Reg] = CurCycle;
}
}
}
// Release all the implicit physical register defs that are live.
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->Cost < 0) {
if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
LiveRegs.erase(I->Reg);
assert(LiveRegDefs[I->Reg] == SU &&
"Physical register dependency violated?");
LiveRegDefs[I->Reg] = NULL;
LiveRegCycles[I->Reg] = 0;
}
}
}
SU->isScheduled = true;
}
/// CapturePred - This does the opposite of ReleasePred. Since SU is being
/// unscheduled, incrcease the succ left count of its predecessors. Remove
/// them from AvailableQueue if necessary.
void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
PredSU->CycleBound = 0;
for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
I != E; ++I) {
if (I->Dep == SU)
continue;
PredSU->CycleBound = std::max(PredSU->CycleBound,
I->Dep->Cycle + PredSU->Latency);
}
if (PredSU->isAvailable) {
PredSU->isAvailable = false;
if (!PredSU->isPending)
AvailableQueue->remove(PredSU);
}
++PredSU->NumSuccsLeft;
}
/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
/// its predecessor states to reflect the change.
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
DEBUG(SU->dump(&DAG));
AvailableQueue->UnscheduledNode(SU);
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
CapturePred(I->Dep, SU, I->isCtrl);
if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg]) {
LiveRegs.erase(I->Reg);
assert(LiveRegDefs[I->Reg] == I->Dep &&
"Physical register dependency violated?");
LiveRegDefs[I->Reg] = NULL;
LiveRegCycles[I->Reg] = 0;
}
}
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->Cost < 0) {
if (LiveRegs.insert(I->Reg)) {
assert(!LiveRegDefs[I->Reg] &&
"Physical register dependency violated?");
LiveRegDefs[I->Reg] = SU;
}
if (I->Dep->Cycle < LiveRegCycles[I->Reg])
LiveRegCycles[I->Reg] = I->Dep->Cycle;
}
}
SU->Cycle = 0;
SU->isScheduled = false;
SU->isAvailable = true;
AvailableQueue->push(SU);
}
// FIXME: This is probably too slow!
static void isReachable(SUnit *SU, SUnit *TargetSU,
SmallPtrSet<SUnit*, 32> &Visited, bool &Reached) {
if (Reached) return;
if (SU == TargetSU) {
Reached = true;
return;
}
if (!Visited.insert(SU)) return;
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E;
++I)
isReachable(I->Dep, TargetSU, Visited, Reached);
}
static bool isReachable(SUnit *SU, SUnit *TargetSU) {
SmallPtrSet<SUnit*, 32> Visited;
bool Reached = false;
isReachable(SU, TargetSU, Visited, Reached);
return Reached;
}
/// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
/// create a cycle.
static bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
if (isReachable(TargetSU, SU))
return true;
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I)
if (I->Cost < 0 && isReachable(TargetSU, I->Dep))
return true;
return false;
}
/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
/// BTCycle in order to schedule a specific node. Returns the last unscheduled
/// SUnit. Also returns if a successor is unscheduled in the process.
void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
unsigned &CurCycle) {
SUnit *OldSU = NULL;
while (CurCycle > BtCycle) {
OldSU = Sequence.back();
Sequence.pop_back();
if (SU->isSucc(OldSU))
// Don't try to remove SU from AvailableQueue.
SU->isAvailable = false;
UnscheduleNodeBottomUp(OldSU);
--CurCycle;
}
if (SU->isSucc(OldSU)) {
assert(false && "Something is wrong!");
abort();
}
++NumBacktracks;
}
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
/// successors to the newly created node.
SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
if (SU->FlaggedNodes.size())
return NULL;
SDNode *N = SU->Node;
if (!N)
return NULL;
SUnit *NewSU;
bool TryUnfold = false;
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
MVT::ValueType VT = N->getValueType(i);
if (VT == MVT::Flag)
return NULL;
else if (VT == MVT::Other)
TryUnfold = true;
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
const SDOperand &Op = N->getOperand(i);
MVT::ValueType VT = Op.Val->getValueType(Op.ResNo);
if (VT == MVT::Flag)
return NULL;
}
if (TryUnfold) {
SmallVector<SDNode*, 4> NewNodes;
if (!MRI->unfoldMemoryOperand(DAG, N, NewNodes))
return NULL;
DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
assert(NewNodes.size() == 2 && "Expected a load folding node!");
N = NewNodes[1];
SDNode *LoadNode = NewNodes[0];
unsigned NumVals = N->getNumValues();
unsigned OldNumVals = SU->Node->getNumValues();
for (unsigned i = 0; i != NumVals; ++i)
One mundane change: Change ReplaceAllUsesOfValueWith to *optionally* take a deleted nodes vector, instead of requiring it. One more significant change: Implement the start of a legalizer that just works on types. This legalizer is designed to run before the operation legalizer and ensure just that the input dag is transformed into an output dag whose operand and result types are all legal, even if the operations on those types are not. This design/impl has the following advantages: 1. When finished, this will *significantly* reduce the amount of code in LegalizeDAG.cpp. It will remove all the code related to promotion and expansion as well as splitting and scalarizing vectors. 2. The new code is very simple, idiomatic, and modular: unlike LegalizeDAG.cpp, it has no 3000 line long functions. :) 3. The implementation is completely iterative instead of recursive, good for hacking on large dags without blowing out your stack. 4. The implementation updates nodes in place when possible instead of deallocating and reallocating the entire graph that points to some mutated node. 5. The code nicely separates out handling of operations with invalid results from operations with invalid operands, making some cases simpler and easier to understand. 6. The new -debug-only=legalize-types option is very very handy :), allowing you to easily understand what legalize types is doing. This is not yet done. Until the ifdef added to SelectionDAGISel.cpp is enabled, this does nothing. However, this code is sufficient to legalize all of the code in 186.crafty, olden and freebench on an x86 machine. The biggest issues are: 1. Vectors aren't implemented at all yet 2. SoftFP is a mess, I need to talk to Evan about it. 3. No lowering to libcalls is implemented yet. 4. Various operations are missing etc. 5. There are FIXME's for stuff I hax0r'd out, like softfp. Hey, at least it is a step in the right direction :). If you'd like to help, just enable the #ifdef in SelectionDAGISel.cpp and compile code with it. If this explodes it will tell you what needs to be implemented. Help is certainly appreciated. Once this goes in, we can do three things: 1. Add a new pass of dag combine between the "type legalizer" and "operation legalizer" passes. This will let us catch some long-standing isel issues that we miss because operation legalization often obfuscates the dag with target-specific nodes. 2. We can rip out all of the type legalization code from LegalizeDAG.cpp, making it much smaller and simpler. When that happens we can then reimplement the core functionality left in it in a much more efficient and non-recursive way. 3. Once the whole legalizer is non-recursive, we can implement whole-function selectiondags maybe... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42981 91177308-0d34-0410-b5e6-96231b3b80d8
2007-10-15 06:10:22 +00:00
DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, i), SDOperand(N, i));
DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, OldNumVals-1),
One mundane change: Change ReplaceAllUsesOfValueWith to *optionally* take a deleted nodes vector, instead of requiring it. One more significant change: Implement the start of a legalizer that just works on types. This legalizer is designed to run before the operation legalizer and ensure just that the input dag is transformed into an output dag whose operand and result types are all legal, even if the operations on those types are not. This design/impl has the following advantages: 1. When finished, this will *significantly* reduce the amount of code in LegalizeDAG.cpp. It will remove all the code related to promotion and expansion as well as splitting and scalarizing vectors. 2. The new code is very simple, idiomatic, and modular: unlike LegalizeDAG.cpp, it has no 3000 line long functions. :) 3. The implementation is completely iterative instead of recursive, good for hacking on large dags without blowing out your stack. 4. The implementation updates nodes in place when possible instead of deallocating and reallocating the entire graph that points to some mutated node. 5. The code nicely separates out handling of operations with invalid results from operations with invalid operands, making some cases simpler and easier to understand. 6. The new -debug-only=legalize-types option is very very handy :), allowing you to easily understand what legalize types is doing. This is not yet done. Until the ifdef added to SelectionDAGISel.cpp is enabled, this does nothing. However, this code is sufficient to legalize all of the code in 186.crafty, olden and freebench on an x86 machine. The biggest issues are: 1. Vectors aren't implemented at all yet 2. SoftFP is a mess, I need to talk to Evan about it. 3. No lowering to libcalls is implemented yet. 4. Various operations are missing etc. 5. There are FIXME's for stuff I hax0r'd out, like softfp. Hey, at least it is a step in the right direction :). If you'd like to help, just enable the #ifdef in SelectionDAGISel.cpp and compile code with it. If this explodes it will tell you what needs to be implemented. Help is certainly appreciated. Once this goes in, we can do three things: 1. Add a new pass of dag combine between the "type legalizer" and "operation legalizer" passes. This will let us catch some long-standing isel issues that we miss because operation legalization often obfuscates the dag with target-specific nodes. 2. We can rip out all of the type legalization code from LegalizeDAG.cpp, making it much smaller and simpler. When that happens we can then reimplement the core functionality left in it in a much more efficient and non-recursive way. 3. Once the whole legalizer is non-recursive, we can implement whole-function selectiondags maybe... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42981 91177308-0d34-0410-b5e6-96231b3b80d8
2007-10-15 06:10:22 +00:00
SDOperand(LoadNode, 1));
SUnit *NewSU = NewSUnit(N);
SUnitMap[N].push_back(NewSU);
const TargetInstrDescriptor *TID = &TII->get(N->getTargetOpcode());
for (unsigned i = 0; i != TID->numOperands; ++i) {
if (TID->getOperandConstraint(i, TOI::TIED_TO) != -1) {
NewSU->isTwoAddress = true;
break;
}
}
if (TID->Flags & M_COMMUTABLE)
NewSU->isCommutable = true;
// FIXME: Calculate height / depth and propagate the changes?
NewSU->Depth = SU->Depth;
NewSU->Height = SU->Height;
ComputeLatency(NewSU);
// LoadNode may already exist. This can happen when there is another
// load from the same location and producing the same type of value
// but it has different alignment or volatileness.
bool isNewLoad = true;
SUnit *LoadSU;
DenseMap<SDNode*, std::vector<SUnit*> >::iterator SMI =
SUnitMap.find(LoadNode);
if (SMI != SUnitMap.end()) {
LoadSU = SMI->second.front();
isNewLoad = false;
} else {
LoadSU = NewSUnit(LoadNode);
SUnitMap[LoadNode].push_back(LoadSU);
LoadSU->Depth = SU->Depth;
LoadSU->Height = SU->Height;
ComputeLatency(LoadSU);
}
SUnit *ChainPred = NULL;
SmallVector<SDep, 4> ChainSuccs;
SmallVector<SDep, 4> LoadPreds;
SmallVector<SDep, 4> NodePreds;
SmallVector<SDep, 4> NodeSuccs;
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl)
ChainPred = I->Dep;
else if (I->Dep->Node && I->Dep->Node->isOperand(LoadNode))
LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
else
NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
}
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl)
ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
I->isCtrl, I->isSpecial));
else
NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
I->isCtrl, I->isSpecial));
}
SU->removePred(ChainPred, true, false);
if (isNewLoad)
LoadSU->addPred(ChainPred, true, false);
for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
SDep *Pred = &LoadPreds[i];
SU->removePred(Pred->Dep, Pred->isCtrl, Pred->isSpecial);
if (isNewLoad)
LoadSU->addPred(Pred->Dep, Pred->isCtrl, Pred->isSpecial,
Pred->Reg, Pred->Cost);
}
for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
SDep *Pred = &NodePreds[i];
SU->removePred(Pred->Dep, Pred->isCtrl, Pred->isSpecial);
NewSU->addPred(Pred->Dep, Pred->isCtrl, Pred->isSpecial,
Pred->Reg, Pred->Cost);
}
for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
SDep *Succ = &NodeSuccs[i];
Succ->Dep->removePred(SU, Succ->isCtrl, Succ->isSpecial);
Succ->Dep->addPred(NewSU, Succ->isCtrl, Succ->isSpecial,
Succ->Reg, Succ->Cost);
}
for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
SDep *Succ = &ChainSuccs[i];
Succ->Dep->removePred(SU, Succ->isCtrl, Succ->isSpecial);
if (isNewLoad)
Succ->Dep->addPred(LoadSU, Succ->isCtrl, Succ->isSpecial,
Succ->Reg, Succ->Cost);
}
if (isNewLoad)
NewSU->addPred(LoadSU, false, false);
if (isNewLoad)
AvailableQueue->addNode(LoadSU);
AvailableQueue->addNode(NewSU);
++NumUnfolds;
if (NewSU->NumSuccsLeft == 0) {
NewSU->isAvailable = true;
return NewSU;
}
SU = NewSU;
}
DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
NewSU = Clone(SU);
// New SUnit has the exact same predecessors.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I)
if (!I->isSpecial) {
NewSU->addPred(I->Dep, I->isCtrl, false, I->Reg, I->Cost);
NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
}
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isSpecial)
continue;
if (I->Dep->isScheduled) {
NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
I->Dep->addPred(NewSU, I->isCtrl, false, I->Reg, I->Cost);
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
SUnit *Succ = DelDeps[i].first;
bool isCtrl = DelDeps[i].second;
Succ->removePred(SU, isCtrl, false);
}
AvailableQueue->updateNode(SU);
AvailableQueue->addNode(NewSU);
++NumDups;
return NewSU;
}
/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
/// and move all scheduled successors of the given SUnit to the last copy.
void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
const TargetRegisterClass *DestRC,
const TargetRegisterClass *SrcRC,
SmallVector<SUnit*, 2> &Copies) {
SUnit *CopyFromSU = NewSUnit(NULL);
CopyFromSU->CopySrcRC = SrcRC;
CopyFromSU->CopyDstRC = DestRC;
CopyFromSU->Depth = SU->Depth;
CopyFromSU->Height = SU->Height;
SUnit *CopyToSU = NewSUnit(NULL);
CopyToSU->CopySrcRC = DestRC;
CopyToSU->CopyDstRC = SrcRC;
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isSpecial)
continue;
if (I->Dep->isScheduled) {
CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
I->Dep->addPred(CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
SUnit *Succ = DelDeps[i].first;
bool isCtrl = DelDeps[i].second;
Succ->removePred(SU, isCtrl, false);
}
CopyFromSU->addPred(SU, false, false, Reg, -1);
CopyToSU->addPred(CopyFromSU, false, false, Reg, 1);
AvailableQueue->updateNode(SU);
AvailableQueue->addNode(CopyFromSU);
AvailableQueue->addNode(CopyToSU);
Copies.push_back(CopyFromSU);
Copies.push_back(CopyToSU);
++NumCCCopies;
}
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
static MVT::ValueType getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
const TargetInstrDescriptor &TID = TII->get(N->getTargetOpcode());
assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
unsigned NumRes = TID.numDefs;
for (const unsigned *ImpDef = TID.ImplicitDefs; *ImpDef; ++ImpDef) {
if (Reg == *ImpDef)
break;
++NumRes;
}
return N->getValueType(NumRes);
}
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
/// scheduling of the given node to satisfy live physical register dependencies.
/// If the specific node is the last one that's available to schedule, do
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
SmallVector<unsigned, 4> &LRegs){
if (LiveRegs.empty())
return false;
SmallSet<unsigned, 4> RegAdded;
// If this node would clobber any "live" register, then it's not ready.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->Cost < 0) {
unsigned Reg = I->Reg;
if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) {
if (RegAdded.insert(Reg))
LRegs.push_back(Reg);
}
for (const unsigned *Alias = MRI->getAliasSet(Reg);
*Alias; ++Alias)
if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) {
if (RegAdded.insert(*Alias))
LRegs.push_back(*Alias);
}
}
}
for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
if (!Node || !Node->isTargetOpcode())
continue;
const TargetInstrDescriptor &TID = TII->get(Node->getTargetOpcode());
if (!TID.ImplicitDefs)
continue;
for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) {
if (RegAdded.insert(*Reg))
LRegs.push_back(*Reg);
}
for (const unsigned *Alias = MRI->getAliasSet(*Reg);
*Alias; ++Alias)
if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) {
if (RegAdded.insert(*Alias))
LRegs.push_back(*Alias);
}
}
}
return !LRegs.empty();
}
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGRRList::ListScheduleBottomUp() {
unsigned CurCycle = 0;
// Add root to Available queue.
SUnit *RootSU = SUnitMap[DAG.getRoot().Val].front();
RootSU->isAvailable = true;
AvailableQueue->push(RootSU);
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
SmallVector<SUnit*, 4> NotReady;
while (!AvailableQueue->empty()) {
bool Delayed = false;
DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
SUnit *CurSU = AvailableQueue->pop();
while (CurSU) {
if (CurSU->CycleBound <= CurCycle) {
SmallVector<unsigned, 4> LRegs;
if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
break;
Delayed = true;
LRegsMap.insert(std::make_pair(CurSU, LRegs));
}
CurSU->isPending = true; // This SU is not in AvailableQueue right now.
NotReady.push_back(CurSU);
CurSU = AvailableQueue->pop();
}
// All candidates are delayed due to live physical reg dependencies.
// Try backtracking, code duplication, or inserting cross class copies
// to resolve it.
if (Delayed && !CurSU) {
for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
SUnit *TrySU = NotReady[i];
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
// Try unscheduling up to the point where it's safe to schedule
// this node.
unsigned LiveCycle = CurCycle;
for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
unsigned Reg = LRegs[j];
unsigned LCycle = LiveRegCycles[Reg];
LiveCycle = std::min(LiveCycle, LCycle);
}
SUnit *OldSU = Sequence[LiveCycle];
if (!WillCreateCycle(TrySU, OldSU)) {
BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
// Force the current node to be scheduled before the node that
// requires the physical reg dep.
if (OldSU->isAvailable) {
OldSU->isAvailable = false;
AvailableQueue->remove(OldSU);
}
TrySU->addPred(OldSU, true, true);
// If one or more successors has been unscheduled, then the current
// node is no longer avaialable. Schedule a successor that's now
// available instead.
if (!TrySU->isAvailable)
CurSU = AvailableQueue->pop();
else {
CurSU = TrySU;
TrySU->isPending = false;
NotReady.erase(NotReady.begin()+i);
}
break;
}
}
if (!CurSU) {
// Can't backtrace. Try duplicating the nodes that produces these
// "expensive to copy" values to break the dependency. In case even
// that doesn't work, insert cross class copies.
SUnit *TrySU = NotReady[0];
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
assert(LRegs.size() == 1 && "Can't handle this yet!");
unsigned Reg = LRegs[0];
SUnit *LRDef = LiveRegDefs[Reg];
SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
if (!NewDef) {
// Issue expensive cross register class copies.
MVT::ValueType VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
const TargetRegisterClass *RC =
MRI->getPhysicalRegisterRegClass(VT, Reg);
const TargetRegisterClass *DestRC = MRI->getCrossCopyRegClass(RC);
if (!DestRC) {
assert(false && "Don't know how to copy this physical register!");
abort();
}
SmallVector<SUnit*, 2> Copies;
InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
DOUT << "Adding an edge from SU # " << TrySU->NodeNum
<< " to SU #" << Copies.front()->NodeNum << "\n";
TrySU->addPred(Copies.front(), true, true);
NewDef = Copies.back();
}
DOUT << "Adding an edge from SU # " << NewDef->NodeNum
<< " to SU #" << TrySU->NodeNum << "\n";
LiveRegDefs[Reg] = NewDef;
NewDef->addPred(TrySU, true, true);
TrySU->isAvailable = false;
CurSU = NewDef;
}
if (!CurSU) {
assert(false && "Unable to resolve live physical register dependencies!");
abort();
}
}
// Add the nodes that aren't ready back onto the available list.
for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
NotReady[i]->isPending = false;
// May no longer be available due to backtracking.
if (NotReady[i]->isAvailable)
AvailableQueue->push(NotReady[i]);
}
NotReady.clear();
if (!CurSU)
Sequence.push_back(0);
else {
ScheduleNodeBottomUp(CurSU, CurCycle);
Sequence.push_back(CurSU);
}
++CurCycle;
}
// Add entry node last
if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
Sequence.push_back(Entry);
}
// Reverse the order if it is bottom up.
std::reverse(Sequence.begin(), Sequence.end());
#ifndef NDEBUG
// Verify that all SUnits were scheduled.
bool AnyNotSched = false;
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
if (SUnits[i].NumSuccsLeft != 0) {
if (!AnyNotSched)
cerr << "*** List scheduling failed! ***\n";
SUnits[i].dump(&DAG);
cerr << "has not been scheduled!\n";
AnyNotSched = true;
}
}
assert(!AnyNotSched);
#endif
}
//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
unsigned CurCycle) {
// FIXME: the distance between two nodes is not always == the predecessor's
// latency. For example, the reader can very well read the register written
// by the predecessor later than the issue cycle. It also depends on the
// interrupt model (drain vs. freeze).
SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
--SuccSU->NumPredsLeft;
#ifndef NDEBUG
if (SuccSU->NumPredsLeft < 0) {
cerr << "*** List scheduling failed! ***\n";
SuccSU->dump(&DAG);
cerr << " has been released too many times!\n";
assert(0);
}
#endif
if (SuccSU->NumPredsLeft == 0) {
SuccSU->isAvailable = true;
AvailableQueue->push(SuccSU);
}
}
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
DOUT << "*** Scheduling [" << CurCycle << "]: ";
DEBUG(SU->dump(&DAG));
SU->Cycle = CurCycle;
AvailableQueue->ScheduledNode(SU);
// Top down: release successors
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I)
ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
SU->isScheduled = true;
}
/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void ScheduleDAGRRList::ListScheduleTopDown() {
unsigned CurCycle = 0;
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
// All leaves to Available queue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors.
if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
AvailableQueue->push(&SUnits[i]);
SUnits[i].isAvailable = true;
}
}
// Emit the entry node first.
ScheduleNodeTopDown(Entry, CurCycle);
Sequence.push_back(Entry);
++CurCycle;
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
std::vector<SUnit*> NotReady;
while (!AvailableQueue->empty()) {
SUnit *CurSU = AvailableQueue->pop();
while (CurSU && CurSU->CycleBound > CurCycle) {
NotReady.push_back(CurSU);
CurSU = AvailableQueue->pop();
}
// Add the nodes that aren't ready back onto the available list.
AvailableQueue->push_all(NotReady);
NotReady.clear();
if (!CurSU)
Sequence.push_back(0);
else {
ScheduleNodeTopDown(CurSU, CurCycle);
Sequence.push_back(CurSU);
}
CurCycle++;
}
#ifndef NDEBUG
// Verify that all SUnits were scheduled.
bool AnyNotSched = false;
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
if (!SUnits[i].isScheduled) {
if (!AnyNotSched)
cerr << "*** List scheduling failed! ***\n";
SUnits[i].dump(&DAG);
cerr << "has not been scheduled!\n";
AnyNotSched = true;
}
}
assert(!AnyNotSched);
#endif
}
//===----------------------------------------------------------------------===//
// RegReductionPriorityQueue Implementation
//===----------------------------------------------------------------------===//
//
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
// to reduce register pressure.
//
namespace {
template<class SF>
class RegReductionPriorityQueue;
/// Sorting functions for the Available queue.
struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
bool operator()(const SUnit* left, const SUnit* right) const;
};
struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
bool operator()(const SUnit* left, const SUnit* right) const;
};
} // end anonymous namespace
static inline bool isCopyFromLiveIn(const SUnit *SU) {
SDNode *N = SU->Node;
return N && N->getOpcode() == ISD::CopyFromReg &&
N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
}
namespace {
template<class SF>
class VISIBILITY_HIDDEN RegReductionPriorityQueue
: public SchedulingPriorityQueue {
std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
public:
RegReductionPriorityQueue() :
Queue(SF(this)) {}
virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
std::vector<SUnit> &sunits) {}
virtual void addNode(const SUnit *SU) {}
virtual void updateNode(const SUnit *SU) {}
virtual void releaseState() {}
virtual unsigned getNodePriority(const SUnit *SU) const {
return 0;
}
unsigned size() const { return Queue.size(); }
bool empty() const { return Queue.empty(); }
void push(SUnit *U) {
Queue.push(U);
}
void push_all(const std::vector<SUnit *> &Nodes) {
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
Queue.push(Nodes[i]);
}
SUnit *pop() {
if (empty()) return NULL;
SUnit *V = Queue.top();
Queue.pop();
return V;
}
/// remove - This is a really inefficient way to remove a node from a
/// priority queue. We should roll our own heap to make this better or
/// something.
void remove(SUnit *SU) {
std::vector<SUnit*> Temp;
assert(!Queue.empty() && "Not in queue!");
while (Queue.top() != SU) {
Temp.push_back(Queue.top());
Queue.pop();
assert(!Queue.empty() && "Not in queue!");
}
// Remove the node from the PQ.
Queue.pop();
// Add all the other nodes back.
for (unsigned i = 0, e = Temp.size(); i != e; ++i)
Queue.push(Temp[i]);
}
};
template<class SF>
class VISIBILITY_HIDDEN BURegReductionPriorityQueue
: public RegReductionPriorityQueue<SF> {
// SUnitMap SDNode to SUnit mapping (n -> n).
DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
// SUnits - The SUnits for the current graph.
const std::vector<SUnit> *SUnits;
// SethiUllmanNumbers - The SethiUllman number for each node.
std::vector<unsigned> SethiUllmanNumbers;
const TargetInstrInfo *TII;
const MRegisterInfo *MRI;
public:
explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii,
const MRegisterInfo *mri)
: TII(tii), MRI(mri) {}
void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
std::vector<SUnit> &sunits) {
SUnitMap = &sumap;
SUnits = &sunits;
// Add pseudo dependency edges for two-address nodes.
AddPseudoTwoAddrDeps();
// Calculate node priorities.
CalculateSethiUllmanNumbers();
}
void addNode(const SUnit *SU) {
SethiUllmanNumbers.resize(SUnits->size(), 0);
CalcNodeSethiUllmanNumber(SU);
}
void updateNode(const SUnit *SU) {
SethiUllmanNumbers[SU->NodeNum] = 0;
CalcNodeSethiUllmanNumber(SU);
}
void releaseState() {
SUnits = 0;
SethiUllmanNumbers.clear();
}
unsigned getNodePriority(const SUnit *SU) const {
assert(SU->NodeNum < SethiUllmanNumbers.size());
unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
// CopyFromReg should be close to its def because it restricts
// allocation choices. But if it is a livein then perhaps we want it
// closer to its uses so it can be coalesced.
return 0xffff;
else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
// CopyToReg should be close to its uses to facilitate coalescing and
// avoid spilling.
return 0;
else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
Opc == TargetInstrInfo::INSERT_SUBREG)
// EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
// facilitate coalescing.
return 0;
else if (SU->NumSuccs == 0)
// If SU does not have a use, i.e. it doesn't produce a value that would
// be consumed (e.g. store), then it terminates a chain of computation.
// Give it a large SethiUllman number so it will be scheduled right
// before its predecessors that it doesn't lengthen their live ranges.
return 0xffff;
else if (SU->NumPreds == 0)
// If SU does not have a def, schedule it close to its uses because it
// does not lengthen any live ranges.
return 0;
else
return SethiUllmanNumbers[SU->NodeNum];
}
private:
bool canClobber(SUnit *SU, SUnit *Op);
void AddPseudoTwoAddrDeps();
void CalculateSethiUllmanNumbers();
unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
};
template<class SF>
class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
: public RegReductionPriorityQueue<SF> {
// SUnitMap SDNode to SUnit mapping (n -> n).
DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
// SUnits - The SUnits for the current graph.
const std::vector<SUnit> *SUnits;
// SethiUllmanNumbers - The SethiUllman number for each node.
std::vector<unsigned> SethiUllmanNumbers;
public:
TDRegReductionPriorityQueue() {}
void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
std::vector<SUnit> &sunits) {
SUnitMap = &sumap;
SUnits = &sunits;
// Calculate node priorities.
CalculateSethiUllmanNumbers();
}
void addNode(const SUnit *SU) {
SethiUllmanNumbers.resize(SUnits->size(), 0);
CalcNodeSethiUllmanNumber(SU);
}
void updateNode(const SUnit *SU) {
SethiUllmanNumbers[SU->NodeNum] = 0;
CalcNodeSethiUllmanNumber(SU);
}
void releaseState() {
SUnits = 0;
SethiUllmanNumbers.clear();
}
unsigned getNodePriority(const SUnit *SU) const {
assert(SU->NodeNum < SethiUllmanNumbers.size());
return SethiUllmanNumbers[SU->NodeNum];
}
private:
void CalculateSethiUllmanNumbers();
unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
};
}
/// closestSucc - Returns the scheduled cycle of the successor which is
/// closet to the current cycle.
static unsigned closestSucc(const SUnit *SU) {
unsigned MaxCycle = 0;
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
unsigned Cycle = I->Dep->Cycle;
// If there are bunch of CopyToRegs stacked up, they should be considered
// to be at the same position.
if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
Cycle = closestSucc(I->Dep)+1;
if (Cycle > MaxCycle)
MaxCycle = Cycle;
}
return MaxCycle;
}
/// calcMaxScratches - Returns an cost estimate of the worse case requirement
/// for scratch registers. Live-in operands and live-out results don't count
/// since they are "fixed".
static unsigned calcMaxScratches(const SUnit *SU) {
unsigned Scratches = 0;
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl) continue; // ignore chain preds
if (I->Dep->Node->getOpcode() != ISD::CopyFromReg)
Scratches++;
}
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl) continue; // ignore chain succs
if (I->Dep->Node->getOpcode() != ISD::CopyToReg)
Scratches += 10;
}
return Scratches;
}
// Bottom up
bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
// There used to be a special tie breaker here that looked for
// two-address instructions and preferred the instruction with a
// def&use operand. The special case triggered diagnostics when
// _GLIBCXX_DEBUG was enabled because it broke the strict weak
// ordering that priority_queue requires. It didn't help much anyway
// because AddPseudoTwoAddrDeps already covers many of the cases
// where it would have applied. In addition, it's counter-intuitive
// that a tie breaker would be the first thing attempted. There's a
// "real" tie breaker below that is the operation of last resort.
// The fact that the "special tie breaker" would trigger when there
// wasn't otherwise a tie is what broke the strict weak ordering
// constraint.
unsigned LPriority = SPQ->getNodePriority(left);
unsigned RPriority = SPQ->getNodePriority(right);
if (LPriority > RPriority)
return true;
else if (LPriority == RPriority) {
// Try schedule def + use closer when Sethi-Ullman numbers are the same.
// e.g.
// t1 = op t2, c1
// t3 = op t4, c2
//
// and the following instructions are both ready.
// t2 = op c3
// t4 = op c4
//
// Then schedule t2 = op first.
// i.e.
// t4 = op c4
// t2 = op c3
// t1 = op t2, c1
// t3 = op t4, c2
//
// This creates more short live intervals.
unsigned LDist = closestSucc(left);
unsigned RDist = closestSucc(right);
if (LDist < RDist)
return true;
else if (LDist == RDist) {
// Intuitively, it's good to push down instructions whose results are
// liveout so their long live ranges won't conflict with other values
// which are needed inside the BB. Further prioritize liveout instructions
// by the number of operands which are calculated within the BB.
unsigned LScratch = calcMaxScratches(left);
unsigned RScratch = calcMaxScratches(right);
if (LScratch > RScratch)
return true;
else if (LScratch == RScratch)
if (left->Height > right->Height)
return true;
else if (left->Height == right->Height)
if (left->Depth < right->Depth)
return true;
else if (left->Depth == right->Depth)
if (left->CycleBound > right->CycleBound)
return true;
}
}
return false;
}
template<class SF>
bool BURegReductionPriorityQueue<SF>::canClobber(SUnit *SU, SUnit *Op) {
if (SU->isTwoAddress) {
unsigned Opc = SU->Node->getTargetOpcode();
unsigned NumRes = TII->getNumDefs(Opc);
unsigned NumOps = ScheduleDAG::CountOperands(SU->Node);
for (unsigned i = 0; i != NumOps; ++i) {
if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) != -1) {
SDNode *DU = SU->Node->getOperand(i).Val;
if ((*SUnitMap).find(DU) != (*SUnitMap).end() &&
Op == (*SUnitMap)[DU][SU->InstanceNo])
return true;
}
}
}
return false;
}
/// hasCopyToRegUse - Return true if SU has a value successor that is a
/// CopyToReg node.
static bool hasCopyToRegUse(SUnit *SU) {
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl) continue;
SUnit *SuccSU = I->Dep;
if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
return true;
}
return false;
}
/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
/// physical register def.
static bool canClobberPhysRegDefs(SUnit *SuccSU, SUnit *SU,
const TargetInstrInfo *TII,
const MRegisterInfo *MRI) {
SDNode *N = SuccSU->Node;
unsigned NumDefs = TII->getNumDefs(N->getTargetOpcode());
const unsigned *ImpDefs = TII->getImplicitDefs(N->getTargetOpcode());
if (!ImpDefs)
return false;
const unsigned *SUImpDefs = TII->getImplicitDefs(SU->Node->getTargetOpcode());
if (!SUImpDefs)
return false;
for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
MVT::ValueType VT = N->getValueType(i);
if (VT == MVT::Flag || VT == MVT::Other)
continue;
unsigned Reg = ImpDefs[i - NumDefs];
for (;*SUImpDefs; ++SUImpDefs) {
unsigned SUReg = *SUImpDefs;
if (MRI->regsOverlap(Reg, SUReg))
return true;
}
}
return false;
}
/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
/// it as a def&use operand. Add a pseudo control edge from it to the other
/// node (if it won't create a cycle) so the two-address one will be scheduled
/// first (lower in the schedule). If both nodes are two-address, favor the
/// one that has a CopyToReg use (more likely to be a loop induction update).
/// If both are two-address, but one is commutable while the other is not
/// commutable, favor the one that's not commutable.
template<class SF>
void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
SUnit *SU = (SUnit *)&((*SUnits)[i]);
if (!SU->isTwoAddress)
continue;
SDNode *Node = SU->Node;
if (!Node || !Node->isTargetOpcode() || SU->FlaggedNodes.size() > 0)
continue;
unsigned Opc = Node->getTargetOpcode();
unsigned NumRes = TII->getNumDefs(Opc);
unsigned NumOps = ScheduleDAG::CountOperands(Node);
for (unsigned j = 0; j != NumOps; ++j) {
if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) != -1) {
SDNode *DU = SU->Node->getOperand(j).Val;
if ((*SUnitMap).find(DU) == (*SUnitMap).end())
continue;
SUnit *DUSU = (*SUnitMap)[DU][SU->InstanceNo];
if (!DUSU) continue;
for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
I != E; ++I) {
if (I->isCtrl) continue;
SUnit *SuccSU = I->Dep;
if (SuccSU == SU)
continue;
// Be conservative. Ignore if nodes aren't at roughly the same
// depth and height.
if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
continue;
if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode())
continue;
// Don't constrain nodes with physical register defs if the
// predecessor can cloober them.
if (SuccSU->hasPhysRegDefs) {
if (canClobberPhysRegDefs(SuccSU, SU, TII, MRI))
continue;
}
// Don't constraint extract_subreg / insert_subreg these may be
// coalesced away. We don't them close to their uses.
unsigned SuccOpc = SuccSU->Node->getTargetOpcode();
if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
SuccOpc == TargetInstrInfo::INSERT_SUBREG)
continue;
if ((!canClobber(SuccSU, DUSU) ||
(hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
(!SU->isCommutable && SuccSU->isCommutable)) &&
!isReachable(SuccSU, SU)) {
DOUT << "Adding an edge from SU # " << SU->NodeNum
<< " to SU #" << SuccSU->NodeNum << "\n";
SU->addPred(SuccSU, true, true);
}
}
}
}
}
}
/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
/// Smaller number is the higher priority.
template<class SF>
unsigned BURegReductionPriorityQueue<SF>::
CalcNodeSethiUllmanNumber(const SUnit *SU) {
unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
if (SethiUllmanNumber != 0)
return SethiUllmanNumber;
unsigned Extra = 0;
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl) continue; // ignore chain preds
SUnit *PredSU = I->Dep;
unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
if (PredSethiUllman > SethiUllmanNumber) {
SethiUllmanNumber = PredSethiUllman;
Extra = 0;
} else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
++Extra;
}
SethiUllmanNumber += Extra;
if (SethiUllmanNumber == 0)
SethiUllmanNumber = 1;
return SethiUllmanNumber;
}
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
/// scheduling units.
template<class SF>
void BURegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
SethiUllmanNumbers.assign(SUnits->size(), 0);
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
}
static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
unsigned Sum = 0;
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
SUnit *SuccSU = I->Dep;
for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
EE = SuccSU->Preds.end(); II != EE; ++II) {
SUnit *PredSU = II->Dep;
if (!PredSU->isScheduled)
++Sum;
}
}
return Sum;
}
// Top down
bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
unsigned LPriority = SPQ->getNodePriority(left);
unsigned RPriority = SPQ->getNodePriority(right);
bool LIsTarget = left->Node && left->Node->isTargetOpcode();
bool RIsTarget = right->Node && right->Node->isTargetOpcode();
bool LIsFloater = LIsTarget && left->NumPreds == 0;
bool RIsFloater = RIsTarget && right->NumPreds == 0;
unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
if (left->NumSuccs == 0 && right->NumSuccs != 0)
return false;
else if (left->NumSuccs != 0 && right->NumSuccs == 0)
return true;
// Special tie breaker: if two nodes share a operand, the one that use it
// as a def&use operand is preferred.
if (LIsTarget && RIsTarget) {
if (left->isTwoAddress && !right->isTwoAddress) {
SDNode *DUNode = left->Node->getOperand(0).Val;
if (DUNode->isOperand(right->Node))
RBonus += 2;
}
if (!left->isTwoAddress && right->isTwoAddress) {
SDNode *DUNode = right->Node->getOperand(0).Val;
if (DUNode->isOperand(left->Node))
LBonus += 2;
}
}
if (LIsFloater)
LBonus -= 2;
if (RIsFloater)
RBonus -= 2;
if (left->NumSuccs == 1)
LBonus += 2;
if (right->NumSuccs == 1)
RBonus += 2;
if (LPriority+LBonus < RPriority+RBonus)
return true;
else if (LPriority == RPriority)
if (left->Depth < right->Depth)
return true;
else if (left->Depth == right->Depth)
if (left->NumSuccsLeft > right->NumSuccsLeft)
return true;
else if (left->NumSuccsLeft == right->NumSuccsLeft)
if (left->CycleBound > right->CycleBound)
return true;
return false;
}
/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
/// Smaller number is the higher priority.
template<class SF>
unsigned TDRegReductionPriorityQueue<SF>::
CalcNodeSethiUllmanNumber(const SUnit *SU) {
unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
if (SethiUllmanNumber != 0)
return SethiUllmanNumber;
unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
SethiUllmanNumber = 0xffff;
else if (SU->NumSuccsLeft == 0)
// If SU does not have a use, i.e. it doesn't produce a value that would
// be consumed (e.g. store), then it terminates a chain of computation.
// Give it a small SethiUllman number so it will be scheduled right before
// its predecessors that it doesn't lengthen their live ranges.
SethiUllmanNumber = 0;
else if (SU->NumPredsLeft == 0 &&
(Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
SethiUllmanNumber = 0xffff;
else {
int Extra = 0;
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl) continue; // ignore chain preds
SUnit *PredSU = I->Dep;
unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
if (PredSethiUllman > SethiUllmanNumber) {
SethiUllmanNumber = PredSethiUllman;
Extra = 0;
} else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
++Extra;
}
SethiUllmanNumber += Extra;
}
return SethiUllmanNumber;
}
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
/// scheduling units.
template<class SF>
void TDRegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
SethiUllmanNumbers.assign(SUnits->size(), 0);
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
SelectionDAG *DAG,
MachineBasicBlock *BB) {
const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
const MRegisterInfo *MRI = DAG->getTarget().getRegisterInfo();
return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true,
new BURegReductionPriorityQueue<bu_ls_rr_sort>(TII, MRI));
}
llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
SelectionDAG *DAG,
MachineBasicBlock *BB) {
return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
new TDRegReductionPriorityQueue<td_ls_rr_sort>());
}