llvm-6502/include/llvm/CodeGen/MachineInstr.h

587 lines
21 KiB
C
Raw Normal View History

//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*--=//
//
// This file contains the declaration of the MachineInstr class, which is the
// basic representation for all target dependant machine instructions used by
// the back end.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
#define LLVM_CODEGEN_MACHINEINSTR_H
#include "llvm/Annotation.h"
#include "Support/iterator"
#include "Support/NonCopyable.h"
#include <vector>
class Value;
class Function;
class MachineBasicBlock;
class TargetMachine;
typedef int MachineOpCode;
/// MOTy - MachineOperandType - This namespace contains an enum that describes
/// how the machine operand is used by the instruction: is it read, defined, or
/// both? Note that the MachineInstr/Operator class currently uses bool
/// arguments to represent this information instead of an enum. Eventually this
/// should change over to use this _easier to read_ representation instead.
///
namespace MOTy {
enum UseType {
Use, /// This machine operand is only read by the instruction
Def, /// This machine operand is only written by the instruction
UseAndDef /// This machine operand is read AND written
};
}
//---------------------------------------------------------------------------
// class MachineOperand
//
// Purpose:
// Representation of each machine instruction operand.
// This class is designed so that you can allocate a vector of operands
// first and initialize each one later.
//
// E.g, for this VM instruction:
// ptr = alloca type, numElements
// we generate 2 machine instructions on the SPARC:
//
// mul Constant, Numelements -> Reg
// add %sp, Reg -> Ptr
//
// Each instruction has 3 operands, listed above. Of those:
// - Reg, NumElements, and Ptr are of operand type MO_Register.
// - Constant is of operand type MO_SignExtendedImmed on the SPARC.
//
// For the register operands, the virtual register type is as follows:
//
// - Reg will be of virtual register type MO_MInstrVirtualReg. The field
// MachineInstr* minstr will point to the instruction that computes reg.
//
// - %sp will be of virtual register type MO_MachineReg.
// The field regNum identifies the machine register.
//
// - NumElements will be of virtual register type MO_VirtualReg.
// The field Value* value identifies the value.
//
// - Ptr will also be of virtual register type MO_VirtualReg.
// Again, the field Value* value identifies the value.
//
//---------------------------------------------------------------------------
class MachineOperand {
public:
enum MachineOperandType {
MO_VirtualRegister, // virtual register for *value
MO_MachineRegister, // pre-assigned machine register `regNum'
MO_CCRegister,
MO_SignExtendedImmed,
MO_UnextendedImmed,
MO_PCRelativeDisp,
};
private:
// Bit fields of the flags variable used for different operand properties
static const char DEFFLAG = 0x1; // this is a def of the operand
static const char DEFUSEFLAG = 0x2; // this is both a def and a use
static const char HIFLAG32 = 0x4; // operand is %hi32(value_or_immedVal)
static const char LOFLAG32 = 0x8; // operand is %lo32(value_or_immedVal)
static const char HIFLAG64 = 0x10; // operand is %hi64(value_or_immedVal)
static const char LOFLAG64 = 0x20; // operand is %lo64(value_or_immedVal)
private:
union {
Value* value; // BasicBlockVal for a label operand.
// ConstantVal for a non-address immediate.
// Virtual register for an SSA operand,
// including hidden operands required for
// the generated machine code.
int64_t immedVal; // constant value for an explicit constant
};
MachineOperandType opType:8; // Pack into 8 bits efficiently after flags.
char flags; // see bit field definitions above
int regNum; // register number for an explicit register
// will be set for a value after reg allocation
private:
MachineOperand()
: immedVal(0),
opType(MO_VirtualRegister),
flags(0),
regNum(-1) {}
MachineOperand(int64_t ImmVal, MachineOperandType OpTy)
: immedVal(ImmVal),
opType(OpTy),
flags(0),
regNum(-1) {}
MachineOperand(int Reg, MachineOperandType OpTy, MOTy::UseType UseTy)
: immedVal(0),
opType(OpTy),
regNum(Reg) {
switch (UseTy) {
case MOTy::Use: flags = 0; break;
case MOTy::Def: flags = DEFFLAG; break;
case MOTy::UseAndDef: flags = DEFUSEFLAG; break;
default: assert(0 && "Invalid value for UseTy!");
}
}
MachineOperand(Value *V, MachineOperandType OpTy, MOTy::UseType UseTy)
: value(V), opType(OpTy), regNum(-1) {
switch (UseTy) {
case MOTy::Use: flags = 0; break;
case MOTy::Def: flags = DEFFLAG; break;
case MOTy::UseAndDef: flags = DEFUSEFLAG; break;
default: assert(0 && "Invalid value for UseTy!");
}
}
public:
MachineOperand(const MachineOperand &M)
: immedVal(M.immedVal),
opType(M.opType),
flags(M.flags),
regNum(M.regNum) {}
~MachineOperand() {}
// Accessor methods. Caller is responsible for checking the
// operand type before invoking the corresponding accessor.
//
MachineOperandType getType() const { return opType; }
inline Value* getVRegValue () const {
assert(opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_PCRelativeDisp);
return value;
}
inline Value* getVRegValueOrNull() const {
return (opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_PCRelativeDisp)? value : NULL;
}
inline int getMachineRegNum() const {
assert(opType == MO_MachineRegister);
return regNum;
}
inline int64_t getImmedValue () const {
assert(opType == MO_SignExtendedImmed || opType == MO_UnextendedImmed);
return immedVal;
}
bool opIsDef () const { return flags & DEFFLAG; }
bool opIsDefAndUse () const { return flags & DEFUSEFLAG; }
bool opHiBits32 () const { return flags & HIFLAG32; }
bool opLoBits32 () const { return flags & LOFLAG32; }
bool opHiBits64 () const { return flags & HIFLAG64; }
bool opLoBits64 () const { return flags & LOFLAG64; }
// used to check if a machine register has been allocated to this operand
inline bool hasAllocatedReg() const {
return (regNum >= 0 &&
(opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_MachineRegister));
}
// used to get the reg number if when one is allocated
inline int getAllocatedRegNum() const {
assert(opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_MachineRegister);
return regNum;
}
inline unsigned getReg() const {
assert(hasAllocatedReg() && "Cannot call MachineOperand::getReg()!");
return regNum;
}
friend std::ostream& operator<<(std::ostream& os, const MachineOperand& mop);
private:
// Construction methods needed for fine-grain control.
// These must be accessed via coresponding methods in MachineInstr.
void markHi32() { flags |= HIFLAG32; }
void markLo32() { flags |= LOFLAG32; }
void markHi64() { flags |= HIFLAG64; }
void markLo64() { flags |= LOFLAG64; }
// Replaces the Value with its corresponding physical register after
// register allocation is complete
void setRegForValue(int reg) {
assert(opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_MachineRegister);
regNum = reg;
}
friend class MachineInstr;
};
//---------------------------------------------------------------------------
// class MachineInstr
//
// Purpose:
// Representation of each machine instruction.
//
// MachineOpCode must be an enum, defined separately for each target.
// E.g., It is defined in SparcInstructionSelection.h for the SPARC.
//
// There are 2 kinds of operands:
//
// (1) Explicit operands of the machine instruction in vector operands[]
//
// (2) "Implicit operands" are values implicitly used or defined by the
// machine instruction, such as arguments to a CALL, return value of
// a CALL (if any), and return value of a RETURN.
//---------------------------------------------------------------------------
class MachineInstr: public NonCopyable { // Disable copy operations
MachineOpCode opCode; // the opcode
std::vector<MachineOperand> operands; // the operands
unsigned numImplicitRefs; // number of implicit operands
MachineOperand& getImplicitOp(unsigned i) {
assert(i < numImplicitRefs && "implicit ref# out of range!");
return operands[i + operands.size() - numImplicitRefs];
}
const MachineOperand& getImplicitOp(unsigned i) const {
assert(i < numImplicitRefs && "implicit ref# out of range!");
return operands[i + operands.size() - numImplicitRefs];
}
// regsUsed - all machine registers used for this instruction, including regs
// used to save values across the instruction. This is a bitset of registers.
std::vector<bool> regsUsed;
// OperandComplete - Return true if it's illegal to add a new operand
bool OperandsComplete() const;
public:
MachineInstr(MachineOpCode Opcode);
MachineInstr(MachineOpCode Opcode, unsigned numOperands);
/// MachineInstr ctor - This constructor only does a _reserve_ of the
/// operands, not a resize for them. It is expected that if you use this that
/// you call add* methods below to fill up the operands, instead of the Set
/// methods. Eventually, the "resizing" ctors will be phased out.
///
MachineInstr(MachineOpCode Opcode, unsigned numOperands, bool XX, bool YY);
/// MachineInstr ctor - Work exactly the same as the ctor above, except that
/// the MachineInstr is created and added to the end of the specified basic
/// block.
///
MachineInstr(MachineBasicBlock *MBB, MachineOpCode Opcode, unsigned numOps);
/// replace - Support to rewrite a machine instruction in place: for now,
/// simply replace() and then set new operands with Set.*Operand methods
/// below.
///
void replace(MachineOpCode Opcode, unsigned numOperands);
// The opcode.
//
const MachineOpCode getOpcode() const { return opCode; }
const MachineOpCode getOpCode() const { return opCode; }
//
// Information about explicit operands of the instruction
//
unsigned getNumOperands() const { return operands.size() - numImplicitRefs; }
const MachineOperand& getOperand(unsigned i) const {
assert(i < getNumOperands() && "getOperand() out of range!");
return operands[i];
}
MachineOperand& getOperand(unsigned i) {
assert(i < getNumOperands() && "getOperand() out of range!");
return operands[i];
}
MachineOperand::MachineOperandType getOperandType(unsigned i) const {
return getOperand(i).getType();
}
bool operandIsDefined(unsigned i) const {
return getOperand(i).opIsDef();
}
bool operandIsDefinedAndUsed(unsigned i) const {
return getOperand(i).opIsDefAndUse();
}
//
// Information about implicit operands of the instruction
//
unsigned getNumImplicitRefs() const{ return numImplicitRefs; }
const Value* getImplicitRef(unsigned i) const {
return getImplicitOp(i).getVRegValue();
}
Value* getImplicitRef(unsigned i) {
return getImplicitOp(i).getVRegValue();
}
bool implicitRefIsDefined(unsigned i) const {
return getImplicitOp(i).opIsDef();
}
bool implicitRefIsDefinedAndUsed(unsigned i) const {
return getImplicitOp(i).opIsDefAndUse();
}
inline void addImplicitRef (Value* V,
bool isDef=false,bool isDefAndUse=false);
inline void setImplicitRef (unsigned i, Value* V,
bool isDef=false, bool isDefAndUse=false);
//
// Information about registers used in this instruction
//
const std::vector<bool> &getRegsUsed() const { return regsUsed; }
// insertUsedReg - Add a register to the Used registers set...
void insertUsedReg(unsigned Reg) {
if (Reg >= regsUsed.size())
regsUsed.resize(Reg+1);
regsUsed[Reg] = true;
}
//
// Debugging support
//
void print(std::ostream &OS, const TargetMachine &TM) const;
void dump() const;
friend std::ostream& operator<<(std::ostream& os, const MachineInstr& minstr);
//
// Define iterators to access the Value operands of the Machine Instruction.
// Note that these iterators only enumerate the explicit operands.
// begin() and end() are defined to produce these iterators...
//
template<class _MI, class _V> class ValOpIterator;
typedef ValOpIterator<const MachineInstr*,const Value*> const_val_op_iterator;
typedef ValOpIterator< MachineInstr*, Value*> val_op_iterator;
// Access to set the operands when building the machine instruction
//
void SetMachineOperandVal (unsigned i,
MachineOperand::MachineOperandType operandType,
Value* V,
bool isDef=false,
bool isDefAndUse=false);
void SetMachineOperandConst (unsigned i,
MachineOperand::MachineOperandType operandType,
int64_t intValue);
void SetMachineOperandReg (unsigned i,
int regNum,
bool isDef=false);
//===--------------------------------------------------------------------===//
// Accessors to add operands when building up machine instructions
//
/// addRegOperand - Add a MO_VirtualRegister operand to the end of the
/// operands list...
///
void addRegOperand(Value *V, bool isDef, bool isDefAndUse=false) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(V, MachineOperand::MO_VirtualRegister,
!isDef ? MOTy::Use : (isDefAndUse ? MOTy::UseAndDef : MOTy::Def)));
}
void addRegOperand(Value *V, MOTy::UseType UTy = MOTy::Use) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(V, MachineOperand::MO_VirtualRegister,
UTy));
}
/// addRegOperand - Add a symbolic virtual register reference...
///
void addRegOperand(int reg, bool isDef) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(reg, MachineOperand::MO_VirtualRegister,
isDef ? MOTy::Def : MOTy::Use));
}
/// addRegOperand - Add a symbolic virtual register reference...
///
void addRegOperand(int reg, MOTy::UseType UTy = MOTy::Use) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(reg, MachineOperand::MO_VirtualRegister,
UTy));
}
/// addPCDispOperand - Add a PC relative displacement operand to the MI
///
void addPCDispOperand(Value *V) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(V, MachineOperand::MO_PCRelativeDisp,
MOTy::Use));
}
/// addMachineRegOperand - Add a virtual register operand to this MachineInstr
///
void addMachineRegOperand(int reg, bool isDef) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(reg, MachineOperand::MO_MachineRegister,
isDef ? MOTy::Def : MOTy::Use));
insertUsedReg(reg);
}
/// addMachineRegOperand - Add a virtual register operand to this MachineInstr
///
void addMachineRegOperand(int reg, MOTy::UseType UTy = MOTy::Use) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(reg, MachineOperand::MO_MachineRegister,
UTy));
insertUsedReg(reg);
}
/// addZeroExtImmOperand - Add a zero extended constant argument to the
/// machine instruction.
///
void addZeroExtImmOperand(int64_t intValue) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(intValue,
MachineOperand::MO_UnextendedImmed));
}
/// addSignExtImmOperand - Add a zero extended constant argument to the
/// machine instruction.
///
void addSignExtImmOperand(int64_t intValue) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(intValue,
MachineOperand::MO_SignExtendedImmed));
}
unsigned substituteValue(const Value* oldVal, Value* newVal,
bool defsOnly = true);
void setOperandHi32(unsigned i) { operands[i].markHi32(); }
void setOperandLo32(unsigned i) { operands[i].markLo32(); }
void setOperandHi64(unsigned i) { operands[i].markHi64(); }
void setOperandLo64(unsigned i) { operands[i].markLo64(); }
// SetRegForOperand - Replaces the Value for the operand with its allocated
// physical register after register allocation is complete.
//
void SetRegForOperand(unsigned i, int regNum);
//
// Iterator to enumerate machine operands.
//
template<class MITy, class VTy>
class ValOpIterator : public forward_iterator<VTy, ptrdiff_t> {
unsigned i;
MITy MI;
void skipToNextVal() {
while (i < MI->getNumOperands() &&
!( (MI->getOperandType(i) == MachineOperand::MO_VirtualRegister ||
MI->getOperandType(i) == MachineOperand::MO_CCRegister)
&& MI->getOperand(i).getVRegValue() != 0))
++i;
}
inline ValOpIterator(MITy mi, unsigned I) : i(I), MI(mi) {
skipToNextVal();
}
public:
typedef ValOpIterator<MITy, VTy> _Self;
inline VTy operator*() const {
return MI->getOperand(i).getVRegValue();
}
const MachineOperand &getMachineOperand() const { return MI->getOperand(i);}
MachineOperand &getMachineOperand() { return MI->getOperand(i);}
inline VTy operator->() const { return operator*(); }
inline bool isDef() const { return MI->getOperand(i).opIsDef(); }
inline bool isDefAndUse() const { return MI->getOperand(i).opIsDefAndUse();}
inline _Self& operator++() { i++; skipToNextVal(); return *this; }
inline _Self operator++(int) { _Self tmp = *this; ++*this; return tmp; }
inline bool operator==(const _Self &y) const {
return i == y.i;
}
inline bool operator!=(const _Self &y) const {
return !operator==(y);
}
static _Self begin(MITy MI) {
return _Self(MI, 0);
}
static _Self end(MITy MI) {
return _Self(MI, MI->getNumOperands());
}
};
// define begin() and end()
val_op_iterator begin() { return val_op_iterator::begin(this); }
val_op_iterator end() { return val_op_iterator::end(this); }
const_val_op_iterator begin() const {
return const_val_op_iterator::begin(this);
}
const_val_op_iterator end() const {
return const_val_op_iterator::end(this);
}
};
// Define here to enable inlining of the functions used.
//
void MachineInstr::addImplicitRef(Value* V,
bool isDef,
bool isDefAndUse)
{
++numImplicitRefs;
addRegOperand(V, isDef, isDefAndUse);
}
void MachineInstr::setImplicitRef(unsigned i,
Value* V,
bool isDef,
bool isDefAndUse)
{
assert(i < getNumImplicitRefs() && "setImplicitRef() out of range!");
SetMachineOperandVal(i + getNumOperands(),
MachineOperand::MO_VirtualRegister,
V, isDef, isDefAndUse);
}
//---------------------------------------------------------------------------
// Debugging Support
//---------------------------------------------------------------------------
std::ostream& operator<< (std::ostream& os,
const MachineInstr& minstr);
std::ostream& operator<< (std::ostream& os,
const MachineOperand& mop);
void PrintMachineInstructions (const Function *F);
#endif