llvm-6502/lib/CodeGen/SelectionDAG/TargetLowering.cpp

366 lines
14 KiB
C++
Raw Normal View History

//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the TargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
TargetLowering::TargetLowering(TargetMachine &tm)
: TM(tm), TD(TM.getTargetData()) {
assert(ISD::BUILTIN_OP_END <= 128 &&
"Fixed size array in TargetLowering is not large enough!");
// All operations default to being supported.
memset(OpActions, 0, sizeof(OpActions));
IsLittleEndian = TD.isLittleEndian();
ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD.getIntPtrType());
ShiftAmtHandling = Undefined;
memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
maxStoresPerMemSet = maxStoresPerMemCpy = maxStoresPerMemMove = 8;
allowUnalignedMemoryAccesses = false;
UseUnderscoreSetJmpLongJmp = false;
IntDivIsCheap = false;
Pow2DivIsCheap = false;
StackPointerRegisterToSaveRestore = 0;
SchedPreferenceInfo = SchedulingForLatency;
}
TargetLowering::~TargetLowering() {}
/// setValueTypeAction - Set the action for a particular value type. This
/// assumes an action has not already been set for this value type.
static void SetValueTypeAction(MVT::ValueType VT,
TargetLowering::LegalizeAction Action,
TargetLowering &TLI,
MVT::ValueType *TransformToType,
TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
ValueTypeActions.setTypeAction(VT, Action);
if (Action == TargetLowering::Promote) {
MVT::ValueType PromoteTo;
if (VT == MVT::f32)
PromoteTo = MVT::f64;
else {
unsigned LargerReg = VT+1;
while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
++LargerReg;
assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
"Nothing to promote to??");
}
PromoteTo = (MVT::ValueType)LargerReg;
}
assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
"Can only promote from int->int or fp->fp!");
assert(VT < PromoteTo && "Must promote to a larger type!");
TransformToType[VT] = PromoteTo;
} else if (Action == TargetLowering::Expand) {
assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
"Cannot expand this type: target must support SOME integer reg!");
// Expand to the next smaller integer type!
TransformToType[VT] = (MVT::ValueType)(VT-1);
}
}
/// computeRegisterProperties - Once all of the register classes are added,
/// this allows us to compute derived properties we expose.
void TargetLowering::computeRegisterProperties() {
assert(MVT::LAST_VALUETYPE <= 32 &&
"Too many value types for ValueTypeActions to hold!");
// Everything defaults to one.
for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
NumElementsForVT[i] = 1;
// Find the largest integer register class.
unsigned LargestIntReg = MVT::i128;
for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
// Every integer value type larger than this largest register takes twice as
// many registers to represent as the previous ValueType.
unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
// Inspect all of the ValueType's possible, deciding how to process them.
for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
// If we are expanding this type, expand it!
if (getNumElements((MVT::ValueType)IntReg) != 1)
SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
ValueTypeActions);
else if (!isTypeLegal((MVT::ValueType)IntReg))
// Otherwise, if we don't have native support, we must promote to a
// larger type.
SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
TransformToType, ValueTypeActions);
else
TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
// If the target does not have native support for F32, promote it to F64.
if (!isTypeLegal(MVT::f32))
SetValueTypeAction(MVT::f32, Promote, *this,
TransformToType, ValueTypeActions);
else
TransformToType[MVT::f32] = MVT::f32;
// Set MVT::Vector to always be Expanded
SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
ValueTypeActions);
assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
TransformToType[MVT::f64] = MVT::f64;
}
const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
return NULL;
}
//===----------------------------------------------------------------------===//
// Optimization Methods
//===----------------------------------------------------------------------===//
/// DemandedBitsAreZero - Return true if 'Op & Mask' demands no bits from a bit
/// set operation such as a sign extend or or/xor with constant whose only
/// use is Op. If it returns true, the old node that sets bits which are
/// not demanded is returned in Old, and its replacement node is returned in
/// New, such that callers of DemandedBitsAreZero may call CombineTo on them if
/// desired.
bool TargetLowering::DemandedBitsAreZero(const SDOperand &Op, uint64_t Mask,
SDOperand &Old, SDOperand &New,
SelectionDAG &DAG) const {
// If the operation has more than one use, we're not interested in it.
// Tracking down and checking all uses would be problematic and slow.
if (!Op.Val->hasOneUse())
return false;
switch (Op.getOpcode()) {
case ISD::AND:
// (X & C1) & C2 == 0 iff C1 & C2 == 0.
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
uint64_t NewVal = Mask & AndRHS->getValue();
return DemandedBitsAreZero(Op.getOperand(0), NewVal, Old, New, DAG);
}
break;
case ISD::SHL:
// (ushl X, C1) & C2 == 0 iff X & (C2 >> C1) == 0
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
uint64_t NewVal = Mask >> ShAmt->getValue();
return DemandedBitsAreZero(Op.getOperand(0), NewVal, Old, New, DAG);
}
break;
case ISD::SIGN_EXTEND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
unsigned ExtendBits = MVT::getSizeInBits(EVT);
// If we're extending from something smaller than MVT::i64 and all of the
// sign extension bits are masked, return true and set New to be the
// first operand, since we no longer care what the high bits are.
if (ExtendBits < 64 && ((Mask & (~0ULL << ExtendBits)) == 0)) {
Old = Op;
New = Op.getOperand(0);
return true;
}
break;
}
case ISD::SRA:
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned OpBits = MVT::getSizeInBits(Op.getValueType());
unsigned SH = ShAmt->getValue();
if (SH && ((Mask & (~0ULL << (OpBits-SH))) == 0)) {
Old = Op;
New = DAG.getNode(ISD::SRL, Op.getValueType(), Op.getOperand(0),
Op.getOperand(1));
return true;
}
}
break;
}
return false;
}
/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Op and Mask are known to
/// be the same type.
bool TargetLowering::MaskedValueIsZero(const SDOperand &Op,
uint64_t Mask) const {
unsigned SrcBits;
if (Mask == 0) return true;
// If we know the result of a setcc has the top bits zero, use this info.
switch (Op.getOpcode()) {
case ISD::Constant:
return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
case ISD::SETCC:
return ((Mask & 1) == 0) &&
getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
case ISD::ZEXTLOAD:
SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
case ISD::ZERO_EXTEND:
SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
return MaskedValueIsZero(Op.getOperand(0),Mask & (~0ULL >> (64-SrcBits)));
case ISD::ANY_EXTEND:
// If the mask only includes bits in the low part, recurse.
SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
if (Mask >> SrcBits) return false; // Use of unknown top bits.
return MaskedValueIsZero(Op.getOperand(0), Mask);
case ISD::AssertZext:
SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
case ISD::AND:
// If either of the operands has zero bits, the result will too.
if (MaskedValueIsZero(Op.getOperand(1), Mask) ||
MaskedValueIsZero(Op.getOperand(0), Mask))
return true;
// (X & C1) & C2 == 0 iff C1 & C2 == 0.
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask);
return false;
case ISD::OR:
case ISD::XOR:
return MaskedValueIsZero(Op.getOperand(0), Mask) &&
MaskedValueIsZero(Op.getOperand(1), Mask);
case ISD::SELECT:
return MaskedValueIsZero(Op.getOperand(1), Mask) &&
MaskedValueIsZero(Op.getOperand(2), Mask);
case ISD::SELECT_CC:
return MaskedValueIsZero(Op.getOperand(2), Mask) &&
MaskedValueIsZero(Op.getOperand(3), Mask);
case ISD::SRL:
// (ushr X, C1) & C2 == 0 iff X & (C2 << C1) == 0
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
uint64_t NewVal = Mask << ShAmt->getValue();
SrcBits = MVT::getSizeInBits(Op.getValueType());
if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
return MaskedValueIsZero(Op.getOperand(0), NewVal);
}
return false;
case ISD::SHL:
// (ushl X, C1) & C2 == 0 iff X & (C2 >> C1) == 0
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
uint64_t NewVal = Mask >> ShAmt->getValue();
return MaskedValueIsZero(Op.getOperand(0), NewVal);
}
return false;
case ISD::ADD:
// (add X, Y) & C == 0 iff (X&C)|(Y&C) == 0 and all bits are low bits.
if ((Mask&(Mask+1)) == 0) { // All low bits
if (MaskedValueIsZero(Op.getOperand(0), Mask) &&
MaskedValueIsZero(Op.getOperand(1), Mask))
return true;
}
break;
case ISD::SUB:
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
// We know that the top bits of C-X are clear if X contains less bits
// than C (i.e. no wrap-around can happen). For example, 20-X is
// positive if we can prove that X is >= 0 and < 16.
unsigned Bits = MVT::getSizeInBits(CLHS->getValueType(0));
if ((CLHS->getValue() & (1 << (Bits-1))) == 0) { // sign bit clear
unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
uint64_t MaskV = (1ULL << (63-NLZ))-1;
if (MaskedValueIsZero(Op.getOperand(1), ~MaskV)) {
// High bits are clear this value is known to be >= C.
unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
if ((Mask & ((1ULL << (64-NLZ2))-1)) == 0)
return true;
}
}
}
break;
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP:
// Bit counting instructions can not set the high bits of the result
// register. The max number of bits sets depends on the input.
return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
default:
// Allow the target to implement this method for its nodes.
if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
return isMaskedValueZeroForTargetNode(Op, Mask);
break;
}
return false;
}
bool TargetLowering::isMaskedValueZeroForTargetNode(const SDOperand &Op,
uint64_t Mask) const {
assert(Op.getOpcode() >= ISD::BUILTIN_OP_END &&
"Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!");
return false;
}
//===----------------------------------------------------------------------===//
// Inline Assembler Implementation Methods
//===----------------------------------------------------------------------===//
TargetLowering::ConstraintType
TargetLowering::getConstraintType(char ConstraintLetter) const {
// FIXME: lots more standard ones to handle.
switch (ConstraintLetter) {
default: return C_Unknown;
case 'r': return C_RegisterClass;
case 'i': // Simple Integer or Relocatable Constant
case 'n': // Simple Integer
case 's': // Relocatable Constant
case 'I': // Target registers.
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P': return C_Other;
}
}
bool TargetLowering::isOperandValidForConstraint(SDOperand Op,
char ConstraintLetter) {
switch (ConstraintLetter) {
default: return false;
case 'i': // Simple Integer or Relocatable Constant
case 'n': // Simple Integer
case 's': // Relocatable Constant
return true; // FIXME: not right.
}
}
std::vector<unsigned> TargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint) const {
// Not a physreg, must not be a register reference or something.
if (Constraint[0] != '{') return std::vector<unsigned>();
assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
// Remove the braces from around the name.
std::string RegName(Constraint.begin()+1, Constraint.end()-1);
// Scan to see if this constraint is a register name.
const MRegisterInfo *RI = TM.getRegisterInfo();
for (unsigned i = 1, e = RI->getNumRegs(); i != e; ++i) {
if (const char *Name = RI->get(i).Name)
if (StringsEqualNoCase(RegName, Name))
return std::vector<unsigned>(1, i);
}
// Unknown physreg.
return std::vector<unsigned>();
}