llvm-6502/lib/Target/PowerPC/PPCAsmPrinter.cpp

1148 lines
43 KiB
C++
Raw Normal View History

//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to PowerPC assembly language. This printer is
// the output mechanism used by `llc'.
//
// Documentation at http://developer.apple.com/documentation/DeveloperTools/
// Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asmprinter"
#include "PPC.h"
#include "InstPrinter/PPCInstPrinter.h"
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182616 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-23 22:26:41 +00:00
#include "MCTargetDesc/PPCMCExpr.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "PPCTargetStreamer.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Writer.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
namespace {
class PPCAsmPrinter : public AsmPrinter {
protected:
MapVector<MCSymbol*, MCSymbol*> TOC;
const PPCSubtarget &Subtarget;
uint64_t TOCLabelID;
public:
explicit PPCAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: AsmPrinter(TM, Streamer),
Subtarget(TM.getSubtarget<PPCSubtarget>()), TOCLabelID(0) {}
virtual const char *getPassName() const {
return "PowerPC Assembly Printer";
}
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
MCSymbol *lookUpOrCreateTOCEntry(MCSymbol *Sym);
virtual void EmitInstruction(const MachineInstr *MI);
void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O);
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O);
};
/// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
class PPCLinuxAsmPrinter : public PPCAsmPrinter {
public:
explicit PPCLinuxAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: PPCAsmPrinter(TM, Streamer) {}
virtual const char *getPassName() const {
return "Linux PPC Assembly Printer";
}
bool doFinalization(Module &M);
virtual void EmitFunctionEntryLabel();
void EmitFunctionBodyEnd();
};
/// PPCDarwinAsmPrinter - PowerPC assembly printer, customized for Darwin/Mac
/// OS X
class PPCDarwinAsmPrinter : public PPCAsmPrinter {
public:
explicit PPCDarwinAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: PPCAsmPrinter(TM, Streamer) {}
virtual const char *getPassName() const {
return "Darwin PPC Assembly Printer";
}
bool doFinalization(Module &M);
void EmitStartOfAsmFile(Module &M);
void EmitFunctionStubs(const MachineModuleInfoMachO::SymbolListTy &Stubs);
};
} // end of anonymous namespace
/// stripRegisterPrefix - This method strips the character prefix from a
/// register name so that only the number is left. Used by for linux asm.
static const char *stripRegisterPrefix(const char *RegName) {
switch (RegName[0]) {
case 'r':
case 'f':
case 'v': return RegName + 1;
case 'c': if (RegName[1] == 'r') return RegName + 2;
}
return RegName;
}
void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
raw_ostream &O) {
const DataLayout *DL = TM.getDataLayout();
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
case MachineOperand::MO_Register: {
const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg());
// Linux assembler (Others?) does not take register mnemonics.
// FIXME - What about special registers used in mfspr/mtspr?
if (!Subtarget.isDarwin()) RegName = stripRegisterPrefix(RegName);
O << RegName;
return;
}
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
case MachineOperand::MO_ConstantPoolIndex:
O << DL->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << MO.getIndex();
return;
case MachineOperand::MO_BlockAddress:
O << *GetBlockAddressSymbol(MO.getBlockAddress());
return;
case MachineOperand::MO_GlobalAddress: {
// Computing the address of a global symbol, not calling it.
const GlobalValue *GV = MO.getGlobal();
MCSymbol *SymToPrint;
// External or weakly linked global variables need non-lazily-resolved stubs
if (TM.getRelocationModel() != Reloc::Static &&
(GV->isDeclaration() || GV->isWeakForLinker())) {
if (!GV->hasHiddenVisibility()) {
SymToPrint = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
MachineModuleInfoImpl::StubValueTy &StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>()
.getGVStubEntry(SymToPrint);
if (StubSym.getPointer() == 0)
StubSym = MachineModuleInfoImpl::
StubValueTy(getSymbol(GV), !GV->hasInternalLinkage());
} else if (GV->isDeclaration() || GV->hasCommonLinkage() ||
GV->hasAvailableExternallyLinkage()) {
SymToPrint = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
MachineModuleInfoImpl::StubValueTy &StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>().
getHiddenGVStubEntry(SymToPrint);
if (StubSym.getPointer() == 0)
StubSym = MachineModuleInfoImpl::
StubValueTy(getSymbol(GV), !GV->hasInternalLinkage());
} else {
SymToPrint = getSymbol(GV);
}
} else {
SymToPrint = getSymbol(GV);
}
O << *SymToPrint;
printOffset(MO.getOffset(), O);
return;
}
default:
O << "<unknown operand type: " << MO.getType() << ">";
return;
}
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
case 'c': // Don't print "$" before a global var name or constant.
break; // PPC never has a prefix.
case 'L': // Write second word of DImode reference.
// Verify that this operand has two consecutive registers.
if (!MI->getOperand(OpNo).isReg() ||
OpNo+1 == MI->getNumOperands() ||
!MI->getOperand(OpNo+1).isReg())
return true;
++OpNo; // Return the high-part.
break;
case 'I':
// Write 'i' if an integer constant, otherwise nothing. Used to print
// addi vs add, etc.
if (MI->getOperand(OpNo).isImm())
O << "i";
return false;
}
}
printOperand(MI, OpNo, O);
return false;
}
// At the moment, all inline asm memory operands are a single register.
// In any case, the output of this routine should always be just one
// assembler operand.
bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'y': // A memory reference for an X-form instruction
{
const char *RegName = "r0";
if (!Subtarget.isDarwin()) RegName = stripRegisterPrefix(RegName);
O << RegName << ", ";
printOperand(MI, OpNo, O);
return false;
}
}
}
assert(MI->getOperand(OpNo).isReg());
O << "0(";
printOperand(MI, OpNo, O);
O << ")";
return false;
}
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
/// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
/// exists for it. If not, create one. Then return a symbol that references
/// the TOC entry.
MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(MCSymbol *Sym) {
const DataLayout *DL = TM.getDataLayout();
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
MCSymbol *&TOCEntry = TOC[Sym];
// To avoid name clash check if the name already exists.
while (TOCEntry == 0) {
if (OutContext.LookupSymbol(Twine(DL->getPrivateGlobalPrefix()) +
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
"C" + Twine(TOCLabelID++)) == 0) {
TOCEntry = GetTempSymbol("C", TOCLabelID);
}
}
return TOCEntry;
}
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream.
///
void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
MCInst TmpInst;
bool isPPC64 = Subtarget.isPPC64();
// Lower multi-instruction pseudo operations.
switch (MI->getOpcode()) {
default: break;
case TargetOpcode::DBG_VALUE:
llvm_unreachable("Should be handled target independently");
case PPC::MovePCtoLR:
case PPC::MovePCtoLR8: {
// Transform %LR = MovePCtoLR
// Into this, where the label is the PIC base:
// bl L1$pb
// L1$pb:
MCSymbol *PICBase = MF->getPICBaseSymbol();
// Emit the 'bl'.
OutStreamer.EmitInstruction(MCInstBuilder(PPC::BL)
// FIXME: We would like an efficient form for this, so we don't have to do
// a lot of extra uniquing.
.addExpr(MCSymbolRefExpr::Create(PICBase, OutContext)));
// Emit the label.
OutStreamer.EmitLabel(PICBase);
return;
}
case PPC::LDtocJTI:
case PPC::LDtocCPT:
case PPC::LDtoc: {
// Transform %X3 = LDtoc <ga:@min1>, %X2
[PowerPC] Always use "assembler dialect" 1 A setting in MCAsmInfo defines the "assembler dialect" to use. This is used by common code to choose between alternatives in a multi-alternative GNU inline asm statement like the following: __asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2)); The meaning of these dialects is platform specific, and GCC defines those for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for new-style (PowerPC) mnemonics, like in the example above. To be compatible with inline asm used with GCC, LLVM ought to do the same. Specifically, this means we should always use assembler dialect 1 since old-style mnemonics really aren't supported on any current platform. However, the current LLVM back-end uses: AssemblerDialect = 1; // New-Style mnemonics. in PPCMCAsmInfoDarwin, and AssemblerDialect = 0; // Old-Style mnemonics. in PPCLinuxMCAsmInfo. The Linux setting really isn't correct, we should be using new-style mnemonics everywhere. This is changed by this commit. Unfortunately, the setting of this variable is overloaded in the back-end to decide whether or not we are on a Darwin target. This is done in PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect to 1 for both Darwin and Linux no longer allows us to make this distinction. Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter to distinguish Darwin targets, and ignores the SyntaxVariant parameter. As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs to be passed in by the caller when creating a target MCExpr. (To do so this patch implicitly also reverts commit 184441.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:20:51 +00:00
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
// Change the opcode to LD, and the global address operand to be a
// reference to the TOC entry we will synthesize later.
TmpInst.setOpcode(PPC::LD);
const MachineOperand &MO = MI->getOperand(1);
// Map symbol -> label of TOC entry
assert(MO.isGlobal() || MO.isCPI() || MO.isJTI());
MCSymbol *MOSymbol = 0;
if (MO.isGlobal())
MOSymbol = getSymbol(MO.getGlobal());
else if (MO.isCPI())
MOSymbol = GetCPISymbol(MO.getIndex());
else if (MO.isJTI())
MOSymbol = GetJTISymbol(MO.getIndex());
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol);
const MCExpr *Exp =
MCSymbolRefExpr::Create(TOCEntry, MCSymbolRefExpr::VK_PPC_TOC,
OutContext);
TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
OutStreamer.EmitInstruction(TmpInst);
return;
}
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
case PPC::ADDIStocHA: {
// Transform %Xd = ADDIStocHA %X2, <ga:@sym>
[PowerPC] Always use "assembler dialect" 1 A setting in MCAsmInfo defines the "assembler dialect" to use. This is used by common code to choose between alternatives in a multi-alternative GNU inline asm statement like the following: __asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2)); The meaning of these dialects is platform specific, and GCC defines those for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for new-style (PowerPC) mnemonics, like in the example above. To be compatible with inline asm used with GCC, LLVM ought to do the same. Specifically, this means we should always use assembler dialect 1 since old-style mnemonics really aren't supported on any current platform. However, the current LLVM back-end uses: AssemblerDialect = 1; // New-Style mnemonics. in PPCMCAsmInfoDarwin, and AssemblerDialect = 0; // Old-Style mnemonics. in PPCLinuxMCAsmInfo. The Linux setting really isn't correct, we should be using new-style mnemonics everywhere. This is changed by this commit. Unfortunately, the setting of this variable is overloaded in the back-end to decide whether or not we are on a Darwin target. This is done in PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect to 1 for both Darwin and Linux no longer allows us to make this distinction. Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter to distinguish Darwin targets, and ignores the SyntaxVariant parameter. As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs to be passed in by the caller when creating a target MCExpr. (To do so this patch implicitly also reverts commit 184441.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:20:51 +00:00
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
// Change the opcode to ADDIS8. If the global address is external,
// has common linkage, is a function address, or is a jump table
// address, then generate a TOC entry and reference that. Otherwise
// reference the symbol directly.
TmpInst.setOpcode(PPC::ADDIS8);
const MachineOperand &MO = MI->getOperand(2);
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI()) &&
"Invalid operand for ADDIStocHA!");
MCSymbol *MOSymbol = 0;
bool IsExternal = false;
bool IsFunction = false;
bool IsCommon = false;
bool IsAvailExt = false;
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
if (MO.isGlobal()) {
const GlobalValue *GValue = MO.getGlobal();
const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
const GlobalValue *RealGValue = GAlias ?
GAlias->resolveAliasedGlobal(false) : GValue;
MOSymbol = getSymbol(RealGValue);
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
IsExternal = GVar && !GVar->hasInitializer();
IsCommon = GVar && RealGValue->hasCommonLinkage();
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
IsFunction = !GVar;
IsAvailExt = GVar && RealGValue->hasAvailableExternallyLinkage();
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
} else if (MO.isCPI())
MOSymbol = GetCPISymbol(MO.getIndex());
else if (MO.isJTI())
MOSymbol = GetJTISymbol(MO.getIndex());
if (IsExternal || IsFunction || IsCommon || IsAvailExt || MO.isJTI() ||
TM.getCodeModel() == CodeModel::Large)
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
const MCExpr *Exp =
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_HA,
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
OutContext);
TmpInst.getOperand(2) = MCOperand::CreateExpr(Exp);
OutStreamer.EmitInstruction(TmpInst);
return;
}
case PPC::LDtocL: {
// Transform %Xd = LDtocL <ga:@sym>, %Xs
[PowerPC] Always use "assembler dialect" 1 A setting in MCAsmInfo defines the "assembler dialect" to use. This is used by common code to choose between alternatives in a multi-alternative GNU inline asm statement like the following: __asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2)); The meaning of these dialects is platform specific, and GCC defines those for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for new-style (PowerPC) mnemonics, like in the example above. To be compatible with inline asm used with GCC, LLVM ought to do the same. Specifically, this means we should always use assembler dialect 1 since old-style mnemonics really aren't supported on any current platform. However, the current LLVM back-end uses: AssemblerDialect = 1; // New-Style mnemonics. in PPCMCAsmInfoDarwin, and AssemblerDialect = 0; // Old-Style mnemonics. in PPCLinuxMCAsmInfo. The Linux setting really isn't correct, we should be using new-style mnemonics everywhere. This is changed by this commit. Unfortunately, the setting of this variable is overloaded in the back-end to decide whether or not we are on a Darwin target. This is done in PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect to 1 for both Darwin and Linux no longer allows us to make this distinction. Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter to distinguish Darwin targets, and ignores the SyntaxVariant parameter. As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs to be passed in by the caller when creating a target MCExpr. (To do so this patch implicitly also reverts commit 184441.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:20:51 +00:00
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
// Change the opcode to LD. If the global address is external, has
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
// common linkage, or is a jump table address, then reference the
// associated TOC entry. Otherwise reference the symbol directly.
TmpInst.setOpcode(PPC::LD);
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
const MachineOperand &MO = MI->getOperand(1);
assert((MO.isGlobal() || MO.isJTI() || MO.isCPI()) &&
"Invalid operand for LDtocL!");
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
MCSymbol *MOSymbol = 0;
if (MO.isJTI())
MOSymbol = lookUpOrCreateTOCEntry(GetJTISymbol(MO.getIndex()));
else if (MO.isCPI()) {
MOSymbol = GetCPISymbol(MO.getIndex());
if (TM.getCodeModel() == CodeModel::Large)
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
}
else if (MO.isGlobal()) {
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
const GlobalValue *GValue = MO.getGlobal();
const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
const GlobalValue *RealGValue = GAlias ?
GAlias->resolveAliasedGlobal(false) : GValue;
MOSymbol = getSymbol(RealGValue);
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() ||
RealGValue->hasAvailableExternallyLinkage() ||
TM.getCodeModel() == CodeModel::Large)
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
}
const MCExpr *Exp =
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
OutContext);
TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
OutStreamer.EmitInstruction(TmpInst);
return;
}
case PPC::ADDItocL: {
// Transform %Xd = ADDItocL %Xs, <ga:@sym>
[PowerPC] Always use "assembler dialect" 1 A setting in MCAsmInfo defines the "assembler dialect" to use. This is used by common code to choose between alternatives in a multi-alternative GNU inline asm statement like the following: __asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2)); The meaning of these dialects is platform specific, and GCC defines those for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for new-style (PowerPC) mnemonics, like in the example above. To be compatible with inline asm used with GCC, LLVM ought to do the same. Specifically, this means we should always use assembler dialect 1 since old-style mnemonics really aren't supported on any current platform. However, the current LLVM back-end uses: AssemblerDialect = 1; // New-Style mnemonics. in PPCMCAsmInfoDarwin, and AssemblerDialect = 0; // Old-Style mnemonics. in PPCLinuxMCAsmInfo. The Linux setting really isn't correct, we should be using new-style mnemonics everywhere. This is changed by this commit. Unfortunately, the setting of this variable is overloaded in the back-end to decide whether or not we are on a Darwin target. This is done in PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect to 1 for both Darwin and Linux no longer allows us to make this distinction. Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter to distinguish Darwin targets, and ignores the SyntaxVariant parameter. As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs to be passed in by the caller when creating a target MCExpr. (To do so this patch implicitly also reverts commit 184441.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:20:51 +00:00
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
// Change the opcode to ADDI8. If the global address is external, then
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
// generate a TOC entry and reference that. Otherwise reference the
// symbol directly.
TmpInst.setOpcode(PPC::ADDI8);
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
const MachineOperand &MO = MI->getOperand(2);
assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL");
MCSymbol *MOSymbol = 0;
bool IsExternal = false;
bool IsFunction = false;
if (MO.isGlobal()) {
const GlobalValue *GValue = MO.getGlobal();
const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
const GlobalValue *RealGValue = GAlias ?
GAlias->resolveAliasedGlobal(false) : GValue;
MOSymbol = getSymbol(RealGValue);
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
IsExternal = GVar && !GVar->hasInitializer();
IsFunction = !GVar;
} else if (MO.isCPI())
MOSymbol = GetCPISymbol(MO.getIndex());
if (IsFunction || IsExternal || TM.getCodeModel() == CodeModel::Large)
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
const MCExpr *Exp =
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
OutContext);
TmpInst.getOperand(2) = MCOperand::CreateExpr(Exp);
OutStreamer.EmitInstruction(TmpInst);
return;
}
case PPC::ADDISgotTprelHA: {
// Transform: %Xd = ADDISgotTprelHA %X2, <ga:@sym>
// Into: %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTprel =
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(PPC::X2)
.addExpr(SymGotTprel));
return;
}
case PPC::LDgotTprelL:
case PPC::LDgotTprelL32: {
// Transform %Xd = LDgotTprelL <ga:@sym>, %Xs
[PowerPC] Always use "assembler dialect" 1 A setting in MCAsmInfo defines the "assembler dialect" to use. This is used by common code to choose between alternatives in a multi-alternative GNU inline asm statement like the following: __asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2)); The meaning of these dialects is platform specific, and GCC defines those for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for new-style (PowerPC) mnemonics, like in the example above. To be compatible with inline asm used with GCC, LLVM ought to do the same. Specifically, this means we should always use assembler dialect 1 since old-style mnemonics really aren't supported on any current platform. However, the current LLVM back-end uses: AssemblerDialect = 1; // New-Style mnemonics. in PPCMCAsmInfoDarwin, and AssemblerDialect = 0; // Old-Style mnemonics. in PPCLinuxMCAsmInfo. The Linux setting really isn't correct, we should be using new-style mnemonics everywhere. This is changed by this commit. Unfortunately, the setting of this variable is overloaded in the back-end to decide whether or not we are on a Darwin target. This is done in PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect to 1 for both Darwin and Linux no longer allows us to make this distinction. Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter to distinguish Darwin targets, and ignores the SyntaxVariant parameter. As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs to be passed in by the caller when creating a target MCExpr. (To do so this patch implicitly also reverts commit 184441.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:20:51 +00:00
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
// Change the opcode to LD.
TmpInst.setOpcode(isPPC64 ? PPC::LD : PPC::LWZ);
const MachineOperand &MO = MI->getOperand(1);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *Exp =
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO,
OutContext);
TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
OutStreamer.EmitInstruction(TmpInst);
return;
}
case PPC::PPC32GOT: {
MCSymbol *GOTSymbol = OutContext.GetOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
const MCExpr *SymGotTlsL =
MCSymbolRefExpr::Create(GOTSymbol, MCSymbolRefExpr::VK_PPC_LO,
OutContext);
const MCExpr *SymGotTlsHA =
MCSymbolRefExpr::Create(GOTSymbol, MCSymbolRefExpr::VK_PPC_HA,
OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::LI)
.addReg(MI->getOperand(0).getReg())
.addExpr(SymGotTlsL));
OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(0).getReg())
.addExpr(SymGotTlsHA));
return;
}
This patch implements the general dynamic TLS model for 64-bit PowerPC. Given a thread-local symbol x with global-dynamic access, the generated code to obtain x's address is: Instruction Relocation Symbol addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x R_PPC64_REL24 __tls_get_addr nop <use address in r3> The implementation borrows from the medium code model work for introducing special forms of ADDIS and ADDI into the DAG representation. This is made slightly more complicated by having to introduce a call to the external function __tls_get_addr. Using the full call machinery is overkill and, more importantly, makes it difficult to add a special relocation. So I've introduced another opcode GET_TLS_ADDR to represent the function call, and surrounded it with register copies to set up the parameter and return value. Most of the code is pretty straightforward. I ran into one peculiarity when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like BL8_NOP_ELF except that it takes another parameter to represent the symbol ("x" above) that requires a relocation on the call. Something in the TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated identically during the emit phase, so this second operand was never visited to generate relocations. This is the reason for the slightly messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding(). Two new tests are included to demonstrate correct external assembly and correct generation of relocations using the integrated assembler. Comments welcome! Thanks, Bill git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
case PPC::ADDIStlsgdHA: {
// Transform: %Xd = ADDIStlsgdHA %X2, <ga:@sym>
// Into: %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
This patch implements the general dynamic TLS model for 64-bit PowerPC. Given a thread-local symbol x with global-dynamic access, the generated code to obtain x's address is: Instruction Relocation Symbol addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x R_PPC64_REL24 __tls_get_addr nop <use address in r3> The implementation borrows from the medium code model work for introducing special forms of ADDIS and ADDI into the DAG representation. This is made slightly more complicated by having to introduce a call to the external function __tls_get_addr. Using the full call machinery is overkill and, more importantly, makes it difficult to add a special relocation. So I've introduced another opcode GET_TLS_ADDR to represent the function call, and surrounded it with register copies to set up the parameter and return value. Most of the code is pretty straightforward. I ran into one peculiarity when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like BL8_NOP_ELF except that it takes another parameter to represent the symbol ("x" above) that requires a relocation on the call. Something in the TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated identically during the emit phase, so this second operand was never visited to generate relocations. This is the reason for the slightly messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding(). Two new tests are included to demonstrate correct external assembly and correct generation of relocations using the integrated assembler. Comments welcome! Thanks, Bill git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
const MCExpr *SymGotTlsGD =
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
This patch implements the general dynamic TLS model for 64-bit PowerPC. Given a thread-local symbol x with global-dynamic access, the generated code to obtain x's address is: Instruction Relocation Symbol addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x R_PPC64_REL24 __tls_get_addr nop <use address in r3> The implementation borrows from the medium code model work for introducing special forms of ADDIS and ADDI into the DAG representation. This is made slightly more complicated by having to introduce a call to the external function __tls_get_addr. Using the full call machinery is overkill and, more importantly, makes it difficult to add a special relocation. So I've introduced another opcode GET_TLS_ADDR to represent the function call, and surrounded it with register copies to set up the parameter and return value. Most of the code is pretty straightforward. I ran into one peculiarity when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like BL8_NOP_ELF except that it takes another parameter to represent the symbol ("x" above) that requires a relocation on the call. Something in the TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated identically during the emit phase, so this second operand was never visited to generate relocations. This is the reason for the slightly messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding(). Two new tests are included to demonstrate correct external assembly and correct generation of relocations using the integrated assembler. Comments welcome! Thanks, Bill git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(PPC::X2)
.addExpr(SymGotTlsGD));
return;
}
case PPC::ADDItlsgdL: {
// Transform: %Xd = ADDItlsgdL %Xs, <ga:@sym>
// Into: %Xd = ADDI8 %Xs, sym@got@tlsgd@l
This patch implements the general dynamic TLS model for 64-bit PowerPC. Given a thread-local symbol x with global-dynamic access, the generated code to obtain x's address is: Instruction Relocation Symbol addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x R_PPC64_REL24 __tls_get_addr nop <use address in r3> The implementation borrows from the medium code model work for introducing special forms of ADDIS and ADDI into the DAG representation. This is made slightly more complicated by having to introduce a call to the external function __tls_get_addr. Using the full call machinery is overkill and, more importantly, makes it difficult to add a special relocation. So I've introduced another opcode GET_TLS_ADDR to represent the function call, and surrounded it with register copies to set up the parameter and return value. Most of the code is pretty straightforward. I ran into one peculiarity when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like BL8_NOP_ELF except that it takes another parameter to represent the symbol ("x" above) that requires a relocation on the call. Something in the TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated identically during the emit phase, so this second operand was never visited to generate relocations. This is the reason for the slightly messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding(). Two new tests are included to demonstrate correct external assembly and correct generation of relocations using the integrated assembler. Comments welcome! Thanks, Bill git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
This patch implements the general dynamic TLS model for 64-bit PowerPC. Given a thread-local symbol x with global-dynamic access, the generated code to obtain x's address is: Instruction Relocation Symbol addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x R_PPC64_REL24 __tls_get_addr nop <use address in r3> The implementation borrows from the medium code model work for introducing special forms of ADDIS and ADDI into the DAG representation. This is made slightly more complicated by having to introduce a call to the external function __tls_get_addr. Using the full call machinery is overkill and, more importantly, makes it difficult to add a special relocation. So I've introduced another opcode GET_TLS_ADDR to represent the function call, and surrounded it with register copies to set up the parameter and return value. Most of the code is pretty straightforward. I ran into one peculiarity when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like BL8_NOP_ELF except that it takes another parameter to represent the symbol ("x" above) that requires a relocation on the call. Something in the TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated identically during the emit phase, so this second operand was never visited to generate relocations. This is the reason for the slightly messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding(). Two new tests are included to demonstrate correct external assembly and correct generation of relocations using the integrated assembler. Comments welcome! Thanks, Bill git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
const MCExpr *SymGotTlsGD =
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO,
This patch implements the general dynamic TLS model for 64-bit PowerPC. Given a thread-local symbol x with global-dynamic access, the generated code to obtain x's address is: Instruction Relocation Symbol addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x R_PPC64_REL24 __tls_get_addr nop <use address in r3> The implementation borrows from the medium code model work for introducing special forms of ADDIS and ADDI into the DAG representation. This is made slightly more complicated by having to introduce a call to the external function __tls_get_addr. Using the full call machinery is overkill and, more importantly, makes it difficult to add a special relocation. So I've introduced another opcode GET_TLS_ADDR to represent the function call, and surrounded it with register copies to set up the parameter and return value. Most of the code is pretty straightforward. I ran into one peculiarity when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like BL8_NOP_ELF except that it takes another parameter to represent the symbol ("x" above) that requires a relocation on the call. Something in the TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated identically during the emit phase, so this second operand was never visited to generate relocations. This is the reason for the slightly messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding(). Two new tests are included to demonstrate correct external assembly and correct generation of relocations using the integrated assembler. Comments welcome! Thanks, Bill git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDI8)
This patch implements the general dynamic TLS model for 64-bit PowerPC. Given a thread-local symbol x with global-dynamic access, the generated code to obtain x's address is: Instruction Relocation Symbol addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x R_PPC64_REL24 __tls_get_addr nop <use address in r3> The implementation borrows from the medium code model work for introducing special forms of ADDIS and ADDI into the DAG representation. This is made slightly more complicated by having to introduce a call to the external function __tls_get_addr. Using the full call machinery is overkill and, more importantly, makes it difficult to add a special relocation. So I've introduced another opcode GET_TLS_ADDR to represent the function call, and surrounded it with register copies to set up the parameter and return value. Most of the code is pretty straightforward. I ran into one peculiarity when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like BL8_NOP_ELF except that it takes another parameter to represent the symbol ("x" above) that requires a relocation on the call. Something in the TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated identically during the emit phase, so this second operand was never visited to generate relocations. This is the reason for the slightly messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding(). Two new tests are included to demonstrate correct external assembly and correct generation of relocations using the integrated assembler. Comments welcome! Thanks, Bill git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsGD));
return;
}
case PPC::GETtlsADDR: {
// Transform: %X3 = GETtlsADDR %X3, <ga:@sym>
// Into: BL8_NOP_TLS __tls_get_addr(sym@tlsgd)
This patch implements the general dynamic TLS model for 64-bit PowerPC. Given a thread-local symbol x with global-dynamic access, the generated code to obtain x's address is: Instruction Relocation Symbol addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x R_PPC64_REL24 __tls_get_addr nop <use address in r3> The implementation borrows from the medium code model work for introducing special forms of ADDIS and ADDI into the DAG representation. This is made slightly more complicated by having to introduce a call to the external function __tls_get_addr. Using the full call machinery is overkill and, more importantly, makes it difficult to add a special relocation. So I've introduced another opcode GET_TLS_ADDR to represent the function call, and surrounded it with register copies to set up the parameter and return value. Most of the code is pretty straightforward. I ran into one peculiarity when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like BL8_NOP_ELF except that it takes another parameter to represent the symbol ("x" above) that requires a relocation on the call. Something in the TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated identically during the emit phase, so this second operand was never visited to generate relocations. This is the reason for the slightly messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding(). Two new tests are included to demonstrate correct external assembly and correct generation of relocations using the integrated assembler. Comments welcome! Thanks, Bill git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
StringRef Name = "__tls_get_addr";
MCSymbol *TlsGetAddr = OutContext.GetOrCreateSymbol(Name);
const MCSymbolRefExpr *TlsRef =
MCSymbolRefExpr::Create(TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
This patch implements the general dynamic TLS model for 64-bit PowerPC. Given a thread-local symbol x with global-dynamic access, the generated code to obtain x's address is: Instruction Relocation Symbol addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x R_PPC64_REL24 __tls_get_addr nop <use address in r3> The implementation borrows from the medium code model work for introducing special forms of ADDIS and ADDI into the DAG representation. This is made slightly more complicated by having to introduce a call to the external function __tls_get_addr. Using the full call machinery is overkill and, more importantly, makes it difficult to add a special relocation. So I've introduced another opcode GET_TLS_ADDR to represent the function call, and surrounded it with register copies to set up the parameter and return value. Most of the code is pretty straightforward. I ran into one peculiarity when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like BL8_NOP_ELF except that it takes another parameter to represent the symbol ("x" above) that requires a relocation on the call. Something in the TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated identically during the emit phase, so this second operand was never visited to generate relocations. This is the reason for the slightly messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding(). Two new tests are included to demonstrate correct external assembly and correct generation of relocations using the integrated assembler. Comments welcome! Thanks, Bill git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
const MCExpr *SymVar =
[PowerPC] Revert r185476 and fix up TLS variant kinds In the commit message to r185476 I wrote: >The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD >correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD. >This causes some confusion with the asm parser, since VK_PPC_TLSGD >is output as @tlsgd, which is then read back in as VK_TLSGD. > >To avoid this confusion, this patch removes the PowerPC-specific >modifiers and uses the generic modifiers throughout. (The only >drawback is that the generic modifiers are printed in upper case >while the usual convention on PowerPC is to use lower-case modifiers. >But this is just a cosmetic issue.) This was unfortunately incorrect, there is is fact another, serious drawback to using the default VK_TLSLD/VK_TLSGD variant kinds: using these causes ELFObjectWriter::RelocNeedsGOT to return true, which in turn causes the ELFObjectWriter to emit an undefined reference to _GLOBAL_OFFSET_TABLE_. This is a problem on powerpc64, because it uses the TOC instead of the GOT, and the linker does not provide _GLOBAL_OFFSET_TABLE_, so the symbol remains undefined. This means shared libraries using TLS built with the integrated assembler are currently broken. While the whole RelocNeedsGOT / _GLOBAL_OFFSET_TABLE_ situation probably ought to be properly fixed at some point, for now I'm simply reverting the r185476 commit. Now this in turn exposes the breakage of handling @tlsgd/@tlsld in the asm parser that this check-in was originally intended to fix. To avoid this regression, I'm also adding a different fix for this problem: while common code now parses @tlsgd as VK_TLSGD, a special hack in the asm parser translates this code to the platform-specific VK_PPC_TLSGD that the back-end now expects. While this is not really pretty, it's self-contained and shouldn't hurt anything else for now. One the underlying problem is fixed, this hack can be reverted again. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185945 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-09 16:41:09 +00:00
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TLSGD,
OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::BL8_NOP_TLS)
This patch implements the general dynamic TLS model for 64-bit PowerPC. Given a thread-local symbol x with global-dynamic access, the generated code to obtain x's address is: Instruction Relocation Symbol addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x R_PPC64_REL24 __tls_get_addr nop <use address in r3> The implementation borrows from the medium code model work for introducing special forms of ADDIS and ADDI into the DAG representation. This is made slightly more complicated by having to introduce a call to the external function __tls_get_addr. Using the full call machinery is overkill and, more importantly, makes it difficult to add a special relocation. So I've introduced another opcode GET_TLS_ADDR to represent the function call, and surrounded it with register copies to set up the parameter and return value. Most of the code is pretty straightforward. I ran into one peculiarity when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like BL8_NOP_ELF except that it takes another parameter to represent the symbol ("x" above) that requires a relocation on the call. Something in the TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated identically during the emit phase, so this second operand was never visited to generate relocations. This is the reason for the slightly messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding(). Two new tests are included to demonstrate correct external assembly and correct generation of relocations using the integrated assembler. Comments welcome! Thanks, Bill git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
.addExpr(TlsRef)
.addExpr(SymVar));
return;
}
case PPC::ADDIStlsldHA: {
// Transform: %Xd = ADDIStlsldHA %X2, <ga:@sym>
// Into: %Xd = ADDIS8 %X2, sym@got@tlsld@ha
assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsLD =
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(PPC::X2)
.addExpr(SymGotTlsLD));
return;
}
case PPC::ADDItlsldL: {
// Transform: %Xd = ADDItlsldL %Xs, <ga:@sym>
// Into: %Xd = ADDI8 %Xs, sym@got@tlsld@l
assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsLD =
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO,
OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDI8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsLD));
return;
}
case PPC::GETtlsldADDR: {
// Transform: %X3 = GETtlsldADDR %X3, <ga:@sym>
// Into: BL8_NOP_TLS __tls_get_addr(sym@tlsld)
assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
StringRef Name = "__tls_get_addr";
MCSymbol *TlsGetAddr = OutContext.GetOrCreateSymbol(Name);
const MCSymbolRefExpr *TlsRef =
MCSymbolRefExpr::Create(TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymVar =
[PowerPC] Revert r185476 and fix up TLS variant kinds In the commit message to r185476 I wrote: >The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD >correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD. >This causes some confusion with the asm parser, since VK_PPC_TLSGD >is output as @tlsgd, which is then read back in as VK_TLSGD. > >To avoid this confusion, this patch removes the PowerPC-specific >modifiers and uses the generic modifiers throughout. (The only >drawback is that the generic modifiers are printed in upper case >while the usual convention on PowerPC is to use lower-case modifiers. >But this is just a cosmetic issue.) This was unfortunately incorrect, there is is fact another, serious drawback to using the default VK_TLSLD/VK_TLSGD variant kinds: using these causes ELFObjectWriter::RelocNeedsGOT to return true, which in turn causes the ELFObjectWriter to emit an undefined reference to _GLOBAL_OFFSET_TABLE_. This is a problem on powerpc64, because it uses the TOC instead of the GOT, and the linker does not provide _GLOBAL_OFFSET_TABLE_, so the symbol remains undefined. This means shared libraries using TLS built with the integrated assembler are currently broken. While the whole RelocNeedsGOT / _GLOBAL_OFFSET_TABLE_ situation probably ought to be properly fixed at some point, for now I'm simply reverting the r185476 commit. Now this in turn exposes the breakage of handling @tlsgd/@tlsld in the asm parser that this check-in was originally intended to fix. To avoid this regression, I'm also adding a different fix for this problem: while common code now parses @tlsgd as VK_TLSGD, a special hack in the asm parser translates this code to the platform-specific VK_PPC_TLSGD that the back-end now expects. While this is not really pretty, it's self-contained and shouldn't hurt anything else for now. One the underlying problem is fixed, this hack can be reverted again. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185945 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-09 16:41:09 +00:00
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TLSLD,
OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::BL8_NOP_TLS)
.addExpr(TlsRef)
.addExpr(SymVar));
return;
}
case PPC::ADDISdtprelHA: {
// Transform: %Xd = ADDISdtprelHA %X3, <ga:@sym>
// Into: %Xd = ADDIS8 %X3, sym@dtprel@ha
assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymDtprel =
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(PPC::X3)
.addExpr(SymDtprel));
return;
}
case PPC::ADDIdtprelL: {
// Transform: %Xd = ADDIdtprelL %Xs, <ga:@sym>
// Into: %Xd = ADDI8 %Xs, sym@dtprel@l
assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymDtprel =
MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDI8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymDtprel));
return;
}
case PPC::MFOCRF:
case PPC::MFOCRF8:
if (!Subtarget.hasMFOCRF()) {
// Transform: %R3 = MFOCRF %CR7
// Into: %R3 = MFCR ;; cr7
unsigned NewOpcode =
MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
OutStreamer.AddComment(PPCInstPrinter::
getRegisterName(MI->getOperand(1).getReg()));
OutStreamer.EmitInstruction(MCInstBuilder(NewOpcode)
.addReg(MI->getOperand(0).getReg()));
return;
}
break;
case PPC::MTOCRF:
case PPC::MTOCRF8:
if (!Subtarget.hasMFOCRF()) {
// Transform: %CR7 = MTOCRF %R3
// Into: MTCRF mask, %R3 ;; cr7
unsigned NewOpcode =
MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
->getEncodingValue(MI->getOperand(0).getReg());
OutStreamer.AddComment(PPCInstPrinter::
getRegisterName(MI->getOperand(0).getReg()));
OutStreamer.EmitInstruction(MCInstBuilder(NewOpcode)
.addImm(Mask)
.addReg(MI->getOperand(1).getReg()));
return;
}
break;
case PPC::SYNC:
// In Book E sync is called msync, handle this special case here...
if (Subtarget.isBookE()) {
OutStreamer.EmitRawText(StringRef("\tmsync"));
return;
}
Index: test/CodeGen/PowerPC/reloc-align.ll =================================================================== --- test/CodeGen/PowerPC/reloc-align.ll (revision 0) +++ test/CodeGen/PowerPC/reloc-align.ll (revision 0) @@ -0,0 +1,34 @@ +; RUN: llc -mcpu=pwr7 -O1 < %s | FileCheck %s + +; This test verifies that the peephole optimization of address accesses +; does not produce a load or store with a relocation that can't be +; satisfied for a given instruction encoding. Reduced from a test supplied +; by Hal Finkel. + +target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128-v128:128:128-n32:64" +target triple = "powerpc64-unknown-linux-gnu" + +%struct.S1 = type { [8 x i8] } + +@main.l_1554 = internal global { i8, i8, i8, i8, i8, i8, i8, i8 } { i8 -1, i8 -6, i8 57, i8 62, i8 -48, i8 0, i8 58, i8 80 }, align 1 + +; Function Attrs: nounwind readonly +define signext i32 @main() #0 { +entry: + %call = tail call fastcc signext i32 @func_90(%struct.S1* byval bitcast ({ i8, i8, i8, i8, i8, i8, i8, i8 }* @main.l_1554 to %struct.S1*)) +; CHECK-NOT: ld {{[0-9]+}}, main.l_1554@toc@l + ret i32 %call +} + +; Function Attrs: nounwind readonly +define internal fastcc signext i32 @func_90(%struct.S1* byval nocapture %p_91) #0 { +entry: + %0 = bitcast %struct.S1* %p_91 to i64* + %bf.load = load i64* %0, align 1 + %bf.shl = shl i64 %bf.load, 26 + %bf.ashr = ashr i64 %bf.shl, 54 + %bf.cast = trunc i64 %bf.ashr to i32 + ret i32 %bf.cast +} + +attributes #0 = { nounwind readonly "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="true" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" } Index: lib/Target/PowerPC/PPCAsmPrinter.cpp =================================================================== --- lib/Target/PowerPC/PPCAsmPrinter.cpp (revision 185327) +++ lib/Target/PowerPC/PPCAsmPrinter.cpp (working copy) @@ -679,7 +679,26 @@ void PPCAsmPrinter::EmitInstruction(const MachineI OutStreamer.EmitRawText(StringRef("\tmsync")); return; } + break; + case PPC::LD: + case PPC::STD: + case PPC::LWA: { + // Verify alignment is legal, so we don't create relocations + // that can't be supported. + // FIXME: This test is currently disabled for Darwin. The test + // suite shows a handful of test cases that fail this check for + // Darwin. Those need to be investigated before this sanity test + // can be enabled for those subtargets. + if (!Subtarget.isDarwin()) { + unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; + const MachineOperand &MO = MI->getOperand(OpNum); + if (MO.isGlobal() && MO.getGlobal()->getAlignment() < 4) + llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); + } + // Now process the instruction normally. + break; } + } LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); OutStreamer.EmitInstruction(TmpInst); Index: lib/Target/PowerPC/PPCISelDAGToDAG.cpp =================================================================== --- lib/Target/PowerPC/PPCISelDAGToDAG.cpp (revision 185327) +++ lib/Target/PowerPC/PPCISelDAGToDAG.cpp (working copy) @@ -1530,6 +1530,14 @@ void PPCDAGToDAGISel::PostprocessISelDAG() { if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { SDLoc dl(GA); const GlobalValue *GV = GA->getGlobal(); + // We can't perform this optimization for data whose alignment + // is insufficient for the instruction encoding. + if (GV->getAlignment() < 4 && + (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD || + StorageOpcode == PPC::LWA)) { + DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); + continue; + } ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags); } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185380 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-01 20:52:27 +00:00
break;
case PPC::LD:
case PPC::STD:
case PPC::LWA_32:
Index: test/CodeGen/PowerPC/reloc-align.ll =================================================================== --- test/CodeGen/PowerPC/reloc-align.ll (revision 0) +++ test/CodeGen/PowerPC/reloc-align.ll (revision 0) @@ -0,0 +1,34 @@ +; RUN: llc -mcpu=pwr7 -O1 < %s | FileCheck %s + +; This test verifies that the peephole optimization of address accesses +; does not produce a load or store with a relocation that can't be +; satisfied for a given instruction encoding. Reduced from a test supplied +; by Hal Finkel. + +target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128-v128:128:128-n32:64" +target triple = "powerpc64-unknown-linux-gnu" + +%struct.S1 = type { [8 x i8] } + +@main.l_1554 = internal global { i8, i8, i8, i8, i8, i8, i8, i8 } { i8 -1, i8 -6, i8 57, i8 62, i8 -48, i8 0, i8 58, i8 80 }, align 1 + +; Function Attrs: nounwind readonly +define signext i32 @main() #0 { +entry: + %call = tail call fastcc signext i32 @func_90(%struct.S1* byval bitcast ({ i8, i8, i8, i8, i8, i8, i8, i8 }* @main.l_1554 to %struct.S1*)) +; CHECK-NOT: ld {{[0-9]+}}, main.l_1554@toc@l + ret i32 %call +} + +; Function Attrs: nounwind readonly +define internal fastcc signext i32 @func_90(%struct.S1* byval nocapture %p_91) #0 { +entry: + %0 = bitcast %struct.S1* %p_91 to i64* + %bf.load = load i64* %0, align 1 + %bf.shl = shl i64 %bf.load, 26 + %bf.ashr = ashr i64 %bf.shl, 54 + %bf.cast = trunc i64 %bf.ashr to i32 + ret i32 %bf.cast +} + +attributes #0 = { nounwind readonly "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="true" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" } Index: lib/Target/PowerPC/PPCAsmPrinter.cpp =================================================================== --- lib/Target/PowerPC/PPCAsmPrinter.cpp (revision 185327) +++ lib/Target/PowerPC/PPCAsmPrinter.cpp (working copy) @@ -679,7 +679,26 @@ void PPCAsmPrinter::EmitInstruction(const MachineI OutStreamer.EmitRawText(StringRef("\tmsync")); return; } + break; + case PPC::LD: + case PPC::STD: + case PPC::LWA: { + // Verify alignment is legal, so we don't create relocations + // that can't be supported. + // FIXME: This test is currently disabled for Darwin. The test + // suite shows a handful of test cases that fail this check for + // Darwin. Those need to be investigated before this sanity test + // can be enabled for those subtargets. + if (!Subtarget.isDarwin()) { + unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; + const MachineOperand &MO = MI->getOperand(OpNum); + if (MO.isGlobal() && MO.getGlobal()->getAlignment() < 4) + llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); + } + // Now process the instruction normally. + break; } + } LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); OutStreamer.EmitInstruction(TmpInst); Index: lib/Target/PowerPC/PPCISelDAGToDAG.cpp =================================================================== --- lib/Target/PowerPC/PPCISelDAGToDAG.cpp (revision 185327) +++ lib/Target/PowerPC/PPCISelDAGToDAG.cpp (working copy) @@ -1530,6 +1530,14 @@ void PPCDAGToDAGISel::PostprocessISelDAG() { if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { SDLoc dl(GA); const GlobalValue *GV = GA->getGlobal(); + // We can't perform this optimization for data whose alignment + // is insufficient for the instruction encoding. + if (GV->getAlignment() < 4 && + (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD || + StorageOpcode == PPC::LWA)) { + DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); + continue; + } ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags); } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185380 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-01 20:52:27 +00:00
case PPC::LWA: {
// Verify alignment is legal, so we don't create relocations
// that can't be supported.
// FIXME: This test is currently disabled for Darwin. The test
// suite shows a handful of test cases that fail this check for
// Darwin. Those need to be investigated before this sanity test
// can be enabled for those subtargets.
if (!Subtarget.isDarwin()) {
unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
const MachineOperand &MO = MI->getOperand(OpNum);
if (MO.isGlobal() && MO.getGlobal()->getAlignment() < 4)
llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
}
// Now process the instruction normally.
break;
}
}
[PowerPC] Always use "assembler dialect" 1 A setting in MCAsmInfo defines the "assembler dialect" to use. This is used by common code to choose between alternatives in a multi-alternative GNU inline asm statement like the following: __asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2)); The meaning of these dialects is platform specific, and GCC defines those for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for new-style (PowerPC) mnemonics, like in the example above. To be compatible with inline asm used with GCC, LLVM ought to do the same. Specifically, this means we should always use assembler dialect 1 since old-style mnemonics really aren't supported on any current platform. However, the current LLVM back-end uses: AssemblerDialect = 1; // New-Style mnemonics. in PPCMCAsmInfoDarwin, and AssemblerDialect = 0; // Old-Style mnemonics. in PPCLinuxMCAsmInfo. The Linux setting really isn't correct, we should be using new-style mnemonics everywhere. This is changed by this commit. Unfortunately, the setting of this variable is overloaded in the back-end to decide whether or not we are on a Darwin target. This is done in PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect to 1 for both Darwin and Linux no longer allows us to make this distinction. Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter to distinguish Darwin targets, and ignores the SyntaxVariant parameter. As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs to be passed in by the caller when creating a target MCExpr. (To do so this patch implicitly also reverts commit 184441.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:20:51 +00:00
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
OutStreamer.EmitInstruction(TmpInst);
}
void PPCLinuxAsmPrinter::EmitFunctionEntryLabel() {
if (!Subtarget.isPPC64()) // linux/ppc32 - Normal entry label.
return AsmPrinter::EmitFunctionEntryLabel();
// Emit an official procedure descriptor.
MCSectionSubPair Current = OutStreamer.getCurrentSection();
const MCSectionELF *Section = OutStreamer.getContext().getELFSection(".opd",
ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC,
SectionKind::getReadOnly());
OutStreamer.SwitchSection(Section);
OutStreamer.EmitLabel(CurrentFnSym);
OutStreamer.EmitValueToAlignment(8);
MCSymbol *Symbol1 =
OutContext.GetOrCreateSymbol(".L." + Twine(CurrentFnSym->getName()));
// Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
// entry point.
OutStreamer.EmitValue(MCSymbolRefExpr::Create(Symbol1, OutContext),
8 /*size*/);
MCSymbol *Symbol2 = OutContext.GetOrCreateSymbol(StringRef(".TOC."));
// Generates a R_PPC64_TOC relocation for TOC base insertion.
OutStreamer.EmitValue(MCSymbolRefExpr::Create(Symbol2,
MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext),
8/*size*/);
// Emit a null environment pointer.
OutStreamer.EmitIntValue(0, 8 /* size */);
OutStreamer.SwitchSection(Current.first, Current.second);
MCSymbol *RealFnSym = OutContext.GetOrCreateSymbol(
".L." + Twine(CurrentFnSym->getName()));
OutStreamer.EmitLabel(RealFnSym);
CurrentFnSymForSize = RealFnSym;
}
bool PPCLinuxAsmPrinter::doFinalization(Module &M) {
const DataLayout *TD = TM.getDataLayout();
Revert the majority of the next patch in the address space series: r165941: Resubmit the changes to llvm core to update the functions to support different pointer sizes on a per address space basis. Despite this commit log, this change primarily changed stuff outside of VMCore, and those changes do not carry any tests for correctness (or even plausibility), and we have consistently found questionable or flat out incorrect cases in these changes. Most of them are probably correct, but we need to devise a system that makes it more clear when we have handled the address space concerns correctly, and ideally each pass that gets updated would receive an accompanying test case that exercises that pass specificaly w.r.t. alternate address spaces. However, from this commit, I have retained the new C API entry points. Those were an orthogonal change that probably should have been split apart, but they seem entirely good. In several places the changes were very obvious cleanups with no actual multiple address space code added; these I have not reverted when I spotted them. In a few other places there were merge conflicts due to a cleaner solution being implemented later, often not using address spaces at all. In those cases, I've preserved the new code which isn't address space dependent. This is part of my ongoing effort to clean out the partial address space code which carries high risk and low test coverage, and not likely to be finished before the 3.2 release looms closer. Duncan and I would both like to see the above issues addressed before we return to these changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 09:14:31 +00:00
bool isPPC64 = TD->getPointerSizeInBits() == 64;
PPCTargetStreamer &TS =
static_cast<PPCTargetStreamer &>(OutStreamer.getTargetStreamer());
if (isPPC64 && !TOC.empty()) {
const MCSectionELF *Section = OutStreamer.getContext().getELFSection(".toc",
ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC,
SectionKind::getReadOnly());
OutStreamer.SwitchSection(Section);
for (MapVector<MCSymbol*, MCSymbol*>::iterator I = TOC.begin(),
E = TOC.end(); I != E; ++I) {
OutStreamer.EmitLabel(I->second);
MCSymbol *S = OutContext.GetOrCreateSymbol(I->first->getName());
TS.emitTCEntry(*S);
}
}
MachineModuleInfoELF &MMIELF =
MMI->getObjFileInfo<MachineModuleInfoELF>();
MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .long _foo
OutStreamer.EmitValue(MCSymbolRefExpr::Create(Stubs[i].second.getPointer(),
OutContext),
isPPC64 ? 8 : 4/*size*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
return AsmPrinter::doFinalization(M);
}
/// EmitFunctionBodyEnd - Print the traceback table before the .size
/// directive.
///
void PPCLinuxAsmPrinter::EmitFunctionBodyEnd() {
// Only the 64-bit target requires a traceback table. For now,
// we only emit the word of zeroes that GDB requires to find
// the end of the function, and zeroes for the eight-byte
// mandatory fields.
// FIXME: We should fill in the eight-byte mandatory fields as described in
// the PPC64 ELF ABI (this is a low-priority item because GDB does not
// currently make use of these fields).
if (Subtarget.isPPC64()) {
OutStreamer.EmitIntValue(0, 4/*size*/);
OutStreamer.EmitIntValue(0, 8/*size*/);
}
}
void PPCDarwinAsmPrinter::EmitStartOfAsmFile(Module &M) {
static const char *const CPUDirectives[] = {
"",
"ppc",
"ppc440",
"ppc601",
"ppc602",
"ppc603",
"ppc7400",
"ppc750",
"ppc970",
"ppcA2",
"ppce500mc",
"ppce5500",
"power3",
"power4",
"power5",
"power5x",
"power6",
"power6x",
"power7",
"ppc64",
"ppc64le"
};
unsigned Directive = Subtarget.getDarwinDirective();
if (Subtarget.hasMFOCRF() && Directive < PPC::DIR_970)
Directive = PPC::DIR_970;
if (Subtarget.hasAltivec() && Directive < PPC::DIR_7400)
Directive = PPC::DIR_7400;
if (Subtarget.isPPC64() && Directive < PPC::DIR_64)
Directive = PPC::DIR_64;
assert(Directive <= PPC::DIR_64 && "Directive out of range.");
// FIXME: This is a total hack, finish mc'izing the PPC backend.
if (OutStreamer.hasRawTextSupport()) {
assert(Directive < array_lengthof(CPUDirectives) &&
"CPUDirectives[] might not be up-to-date!");
OutStreamer.EmitRawText("\t.machine " + Twine(CPUDirectives[Directive]));
}
// Prime text sections so they are adjacent. This reduces the likelihood a
// large data or debug section causes a branch to exceed 16M limit.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection());
if (TM.getRelocationModel() == Reloc::PIC_) {
OutStreamer.SwitchSection(
OutContext.getMachOSection("__TEXT", "__picsymbolstub1",
MCSectionMachO::S_SYMBOL_STUBS |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
32, SectionKind::getText()));
} else if (TM.getRelocationModel() == Reloc::DynamicNoPIC) {
OutStreamer.SwitchSection(
OutContext.getMachOSection("__TEXT","__symbol_stub1",
MCSectionMachO::S_SYMBOL_STUBS |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
16, SectionKind::getText()));
}
OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
}
static MCSymbol *GetLazyPtr(MCSymbol *Sym, MCContext &Ctx) {
// Remove $stub suffix, add $lazy_ptr.
StringRef NoStub = Sym->getName().substr(0, Sym->getName().size()-5);
return Ctx.GetOrCreateSymbol(NoStub + "$lazy_ptr");
}
static MCSymbol *GetAnonSym(MCSymbol *Sym, MCContext &Ctx) {
// Add $tmp suffix to $stub, yielding $stub$tmp.
return Ctx.GetOrCreateSymbol(Sym->getName() + "$tmp");
}
void PPCDarwinAsmPrinter::
EmitFunctionStubs(const MachineModuleInfoMachO::SymbolListTy &Stubs) {
Revert the majority of the next patch in the address space series: r165941: Resubmit the changes to llvm core to update the functions to support different pointer sizes on a per address space basis. Despite this commit log, this change primarily changed stuff outside of VMCore, and those changes do not carry any tests for correctness (or even plausibility), and we have consistently found questionable or flat out incorrect cases in these changes. Most of them are probably correct, but we need to devise a system that makes it more clear when we have handled the address space concerns correctly, and ideally each pass that gets updated would receive an accompanying test case that exercises that pass specificaly w.r.t. alternate address spaces. However, from this commit, I have retained the new C API entry points. Those were an orthogonal change that probably should have been split apart, but they seem entirely good. In several places the changes were very obvious cleanups with no actual multiple address space code added; these I have not reverted when I spotted them. In a few other places there were merge conflicts due to a cleaner solution being implemented later, often not using address spaces at all. In those cases, I've preserved the new code which isn't address space dependent. This is part of my ongoing effort to clean out the partial address space code which carries high risk and low test coverage, and not likely to be finished before the 3.2 release looms closer. Duncan and I would both like to see the above issues addressed before we return to these changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 09:14:31 +00:00
bool isPPC64 = TM.getDataLayout()->getPointerSizeInBits() == 64;
[PowerPC] Always use "assembler dialect" 1 A setting in MCAsmInfo defines the "assembler dialect" to use. This is used by common code to choose between alternatives in a multi-alternative GNU inline asm statement like the following: __asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2)); The meaning of these dialects is platform specific, and GCC defines those for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for new-style (PowerPC) mnemonics, like in the example above. To be compatible with inline asm used with GCC, LLVM ought to do the same. Specifically, this means we should always use assembler dialect 1 since old-style mnemonics really aren't supported on any current platform. However, the current LLVM back-end uses: AssemblerDialect = 1; // New-Style mnemonics. in PPCMCAsmInfoDarwin, and AssemblerDialect = 0; // Old-Style mnemonics. in PPCLinuxMCAsmInfo. The Linux setting really isn't correct, we should be using new-style mnemonics everywhere. This is changed by this commit. Unfortunately, the setting of this variable is overloaded in the back-end to decide whether or not we are on a Darwin target. This is done in PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect to 1 for both Darwin and Linux no longer allows us to make this distinction. Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter to distinguish Darwin targets, and ignores the SyntaxVariant parameter. As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs to be passed in by the caller when creating a target MCExpr. (To do so this patch implicitly also reverts commit 184441.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:20:51 +00:00
bool isDarwin = Subtarget.isDarwin();
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
// .lazy_symbol_pointer
const MCSection *LSPSection = TLOFMacho.getLazySymbolPointerSection();
// Output stubs for dynamically-linked functions
if (TM.getRelocationModel() == Reloc::PIC_) {
const MCSection *StubSection =
OutContext.getMachOSection("__TEXT", "__picsymbolstub1",
MCSectionMachO::S_SYMBOL_STUBS |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
32, SectionKind::getText());
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
OutStreamer.SwitchSection(StubSection);
EmitAlignment(4);
MCSymbol *Stub = Stubs[i].first;
MCSymbol *RawSym = Stubs[i].second.getPointer();
MCSymbol *LazyPtr = GetLazyPtr(Stub, OutContext);
MCSymbol *AnonSymbol = GetAnonSym(Stub, OutContext);
OutStreamer.EmitLabel(Stub);
OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
const MCExpr *Anon = MCSymbolRefExpr::Create(AnonSymbol, OutContext);
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182616 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-23 22:26:41 +00:00
const MCExpr *LazyPtrExpr = MCSymbolRefExpr::Create(LazyPtr, OutContext);
const MCExpr *Sub =
MCBinaryExpr::CreateSub(LazyPtrExpr, Anon, OutContext);
// mflr r0
OutStreamer.EmitInstruction(MCInstBuilder(PPC::MFLR).addReg(PPC::R0));
// bcl 20, 31, AnonSymbol
OutStreamer.EmitInstruction(MCInstBuilder(PPC::BCLalways).addExpr(Anon));
OutStreamer.EmitLabel(AnonSymbol);
// mflr r11
OutStreamer.EmitInstruction(MCInstBuilder(PPC::MFLR).addReg(PPC::R11));
// addis r11, r11, ha16(LazyPtr - AnonSymbol)
[PowerPC] Always use "assembler dialect" 1 A setting in MCAsmInfo defines the "assembler dialect" to use. This is used by common code to choose between alternatives in a multi-alternative GNU inline asm statement like the following: __asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2)); The meaning of these dialects is platform specific, and GCC defines those for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for new-style (PowerPC) mnemonics, like in the example above. To be compatible with inline asm used with GCC, LLVM ought to do the same. Specifically, this means we should always use assembler dialect 1 since old-style mnemonics really aren't supported on any current platform. However, the current LLVM back-end uses: AssemblerDialect = 1; // New-Style mnemonics. in PPCMCAsmInfoDarwin, and AssemblerDialect = 0; // Old-Style mnemonics. in PPCLinuxMCAsmInfo. The Linux setting really isn't correct, we should be using new-style mnemonics everywhere. This is changed by this commit. Unfortunately, the setting of this variable is overloaded in the back-end to decide whether or not we are on a Darwin target. This is done in PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect to 1 for both Darwin and Linux no longer allows us to make this distinction. Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter to distinguish Darwin targets, and ignores the SyntaxVariant parameter. As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs to be passed in by the caller when creating a target MCExpr. (To do so this patch implicitly also reverts commit 184441.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:20:51 +00:00
const MCExpr *SubHa16 = PPCMCExpr::CreateHa(Sub, isDarwin, OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS)
.addReg(PPC::R11)
.addReg(PPC::R11)
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182616 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-23 22:26:41 +00:00
.addExpr(SubHa16));
// mtlr r0
OutStreamer.EmitInstruction(MCInstBuilder(PPC::MTLR).addReg(PPC::R0));
// ldu r12, lo16(LazyPtr - AnonSymbol)(r11)
// lwzu r12, lo16(LazyPtr - AnonSymbol)(r11)
[PowerPC] Always use "assembler dialect" 1 A setting in MCAsmInfo defines the "assembler dialect" to use. This is used by common code to choose between alternatives in a multi-alternative GNU inline asm statement like the following: __asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2)); The meaning of these dialects is platform specific, and GCC defines those for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for new-style (PowerPC) mnemonics, like in the example above. To be compatible with inline asm used with GCC, LLVM ought to do the same. Specifically, this means we should always use assembler dialect 1 since old-style mnemonics really aren't supported on any current platform. However, the current LLVM back-end uses: AssemblerDialect = 1; // New-Style mnemonics. in PPCMCAsmInfoDarwin, and AssemblerDialect = 0; // Old-Style mnemonics. in PPCLinuxMCAsmInfo. The Linux setting really isn't correct, we should be using new-style mnemonics everywhere. This is changed by this commit. Unfortunately, the setting of this variable is overloaded in the back-end to decide whether or not we are on a Darwin target. This is done in PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect to 1 for both Darwin and Linux no longer allows us to make this distinction. Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter to distinguish Darwin targets, and ignores the SyntaxVariant parameter. As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs to be passed in by the caller when creating a target MCExpr. (To do so this patch implicitly also reverts commit 184441.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:20:51 +00:00
const MCExpr *SubLo16 = PPCMCExpr::CreateLo(Sub, isDarwin, OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(isPPC64 ? PPC::LDU : PPC::LWZU)
.addReg(PPC::R12)
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182616 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-23 22:26:41 +00:00
.addExpr(SubLo16).addExpr(SubLo16)
.addReg(PPC::R11));
// mtctr r12
OutStreamer.EmitInstruction(MCInstBuilder(PPC::MTCTR).addReg(PPC::R12));
// bctr
OutStreamer.EmitInstruction(MCInstBuilder(PPC::BCTR));
OutStreamer.SwitchSection(LSPSection);
OutStreamer.EmitLabel(LazyPtr);
OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
MCSymbol *DyldStubBindingHelper =
OutContext.GetOrCreateSymbol(StringRef("dyld_stub_binding_helper"));
if (isPPC64) {
// .quad dyld_stub_binding_helper
OutStreamer.EmitSymbolValue(DyldStubBindingHelper, 8);
} else {
// .long dyld_stub_binding_helper
OutStreamer.EmitSymbolValue(DyldStubBindingHelper, 4);
}
}
OutStreamer.AddBlankLine();
return;
}
const MCSection *StubSection =
OutContext.getMachOSection("__TEXT","__symbol_stub1",
MCSectionMachO::S_SYMBOL_STUBS |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
16, SectionKind::getText());
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
MCSymbol *Stub = Stubs[i].first;
MCSymbol *RawSym = Stubs[i].second.getPointer();
MCSymbol *LazyPtr = GetLazyPtr(Stub, OutContext);
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182616 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-23 22:26:41 +00:00
const MCExpr *LazyPtrExpr = MCSymbolRefExpr::Create(LazyPtr, OutContext);
OutStreamer.SwitchSection(StubSection);
EmitAlignment(4);
OutStreamer.EmitLabel(Stub);
OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182616 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-23 22:26:41 +00:00
// lis r11, ha16(LazyPtr)
[PowerPC] Always use "assembler dialect" 1 A setting in MCAsmInfo defines the "assembler dialect" to use. This is used by common code to choose between alternatives in a multi-alternative GNU inline asm statement like the following: __asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2)); The meaning of these dialects is platform specific, and GCC defines those for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for new-style (PowerPC) mnemonics, like in the example above. To be compatible with inline asm used with GCC, LLVM ought to do the same. Specifically, this means we should always use assembler dialect 1 since old-style mnemonics really aren't supported on any current platform. However, the current LLVM back-end uses: AssemblerDialect = 1; // New-Style mnemonics. in PPCMCAsmInfoDarwin, and AssemblerDialect = 0; // Old-Style mnemonics. in PPCLinuxMCAsmInfo. The Linux setting really isn't correct, we should be using new-style mnemonics everywhere. This is changed by this commit. Unfortunately, the setting of this variable is overloaded in the back-end to decide whether or not we are on a Darwin target. This is done in PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect to 1 for both Darwin and Linux no longer allows us to make this distinction. Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter to distinguish Darwin targets, and ignores the SyntaxVariant parameter. As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs to be passed in by the caller when creating a target MCExpr. (To do so this patch implicitly also reverts commit 184441.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:20:51 +00:00
const MCExpr *LazyPtrHa16 =
PPCMCExpr::CreateHa(LazyPtrExpr, isDarwin, OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(PPC::LIS)
.addReg(PPC::R11)
.addExpr(LazyPtrHa16));
// ldu r12, lo16(LazyPtr)(r11)
// lwzu r12, lo16(LazyPtr)(r11)
[PowerPC] Always use "assembler dialect" 1 A setting in MCAsmInfo defines the "assembler dialect" to use. This is used by common code to choose between alternatives in a multi-alternative GNU inline asm statement like the following: __asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2)); The meaning of these dialects is platform specific, and GCC defines those for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for new-style (PowerPC) mnemonics, like in the example above. To be compatible with inline asm used with GCC, LLVM ought to do the same. Specifically, this means we should always use assembler dialect 1 since old-style mnemonics really aren't supported on any current platform. However, the current LLVM back-end uses: AssemblerDialect = 1; // New-Style mnemonics. in PPCMCAsmInfoDarwin, and AssemblerDialect = 0; // Old-Style mnemonics. in PPCLinuxMCAsmInfo. The Linux setting really isn't correct, we should be using new-style mnemonics everywhere. This is changed by this commit. Unfortunately, the setting of this variable is overloaded in the back-end to decide whether or not we are on a Darwin target. This is done in PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect to 1 for both Darwin and Linux no longer allows us to make this distinction. Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter to distinguish Darwin targets, and ignores the SyntaxVariant parameter. As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs to be passed in by the caller when creating a target MCExpr. (To do so this patch implicitly also reverts commit 184441.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:20:51 +00:00
const MCExpr *LazyPtrLo16 =
PPCMCExpr::CreateLo(LazyPtrExpr, isDarwin, OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(isPPC64 ? PPC::LDU : PPC::LWZU)
.addReg(PPC::R12)
.addExpr(LazyPtrLo16).addExpr(LazyPtrLo16)
.addReg(PPC::R11));
// mtctr r12
OutStreamer.EmitInstruction(MCInstBuilder(PPC::MTCTR).addReg(PPC::R12));
// bctr
OutStreamer.EmitInstruction(MCInstBuilder(PPC::BCTR));
OutStreamer.SwitchSection(LSPSection);
OutStreamer.EmitLabel(LazyPtr);
OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
MCSymbol *DyldStubBindingHelper =
OutContext.GetOrCreateSymbol(StringRef("dyld_stub_binding_helper"));
if (isPPC64) {
// .quad dyld_stub_binding_helper
OutStreamer.EmitSymbolValue(DyldStubBindingHelper, 8);
} else {
// .long dyld_stub_binding_helper
OutStreamer.EmitSymbolValue(DyldStubBindingHelper, 4);
}
}
OutStreamer.AddBlankLine();
}
bool PPCDarwinAsmPrinter::doFinalization(Module &M) {
Revert the majority of the next patch in the address space series: r165941: Resubmit the changes to llvm core to update the functions to support different pointer sizes on a per address space basis. Despite this commit log, this change primarily changed stuff outside of VMCore, and those changes do not carry any tests for correctness (or even plausibility), and we have consistently found questionable or flat out incorrect cases in these changes. Most of them are probably correct, but we need to devise a system that makes it more clear when we have handled the address space concerns correctly, and ideally each pass that gets updated would receive an accompanying test case that exercises that pass specificaly w.r.t. alternate address spaces. However, from this commit, I have retained the new C API entry points. Those were an orthogonal change that probably should have been split apart, but they seem entirely good. In several places the changes were very obvious cleanups with no actual multiple address space code added; these I have not reverted when I spotted them. In a few other places there were merge conflicts due to a cleaner solution being implemented later, often not using address spaces at all. In those cases, I've preserved the new code which isn't address space dependent. This is part of my ongoing effort to clean out the partial address space code which carries high risk and low test coverage, and not likely to be finished before the 3.2 release looms closer. Duncan and I would both like to see the above issues addressed before we return to these changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 09:14:31 +00:00
bool isPPC64 = TM.getDataLayout()->getPointerSizeInBits() == 64;
// Darwin/PPC always uses mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetFnStubList();
if (!Stubs.empty())
EmitFunctionStubs(Stubs);
if (MAI->doesSupportExceptionHandling() && MMI) {
// Add the (possibly multiple) personalities to the set of global values.
// Only referenced functions get into the Personalities list.
const std::vector<const Function*> &Personalities = MMI->getPersonalities();
for (std::vector<const Function*>::const_iterator I = Personalities.begin(),
E = Personalities.end(); I != E; ++I) {
if (*I) {
MCSymbol *NLPSym = getSymbolWithGlobalValueBase(*I, "$non_lazy_ptr");
MachineModuleInfoImpl::StubValueTy &StubSym =
MMIMacho.getGVStubEntry(NLPSym);
StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(*I), true);
}
}
}
// Output stubs for dynamically-linked functions.
Stubs = MMIMacho.GetGVStubList();
// Output macho stubs for external and common global variables.
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(isPPC64 ? 3 : 2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .indirect_symbol _foo
MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer.EmitIntValue(0, isPPC64 ? 8 : 4/*size*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info pointers
// need to be indirect and pc-rel. We accomplish this by using NLPs.
// However, sometimes the types are local to the file. So we need to
// fill in the value for the NLP in those cases.
OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
OutContext),
isPPC64 ? 8 : 4/*size*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
Stubs = MMIMacho.GetHiddenGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
EmitAlignment(isPPC64 ? 3 : 2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .long _foo
OutStreamer.EmitValue(MCSymbolRefExpr::
Create(Stubs[i].second.getPointer(),
OutContext),
isPPC64 ? 8 : 4/*size*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never generates
// code that does this, it is always safe to set.
OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
return AsmPrinter::doFinalization(M);
}
/// createPPCAsmPrinterPass - Returns a pass that prints the PPC assembly code
/// for a MachineFunction to the given output stream, in a format that the
/// Darwin assembler can deal with.
///
static AsmPrinter *createPPCAsmPrinterPass(TargetMachine &tm,
MCStreamer &Streamer) {
const PPCSubtarget *Subtarget = &tm.getSubtarget<PPCSubtarget>();
if (Subtarget->isDarwin())
return new PPCDarwinAsmPrinter(tm, Streamer);
return new PPCLinuxAsmPrinter(tm, Streamer);
}
// Force static initialization.
Reapply TargetRegistry refactoring commits. --- Reverse-merging r75799 into '.': U test/Analysis/PointerTracking U include/llvm/Target/TargetMachineRegistry.h U include/llvm/Target/TargetMachine.h U include/llvm/Target/TargetRegistry.h U include/llvm/Target/TargetSelect.h U tools/lto/LTOCodeGenerator.cpp U tools/lto/LTOModule.cpp U tools/llc/llc.cpp U lib/Target/PowerPC/PPCTargetMachine.h U lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp U lib/Target/PowerPC/PPCTargetMachine.cpp U lib/Target/PowerPC/PPC.h U lib/Target/ARM/ARMTargetMachine.cpp U lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp U lib/Target/ARM/ARMTargetMachine.h U lib/Target/ARM/ARM.h U lib/Target/XCore/XCoreTargetMachine.cpp U lib/Target/XCore/XCoreTargetMachine.h U lib/Target/PIC16/PIC16TargetMachine.cpp U lib/Target/PIC16/PIC16TargetMachine.h U lib/Target/Alpha/AsmPrinter/AlphaAsmPrinter.cpp U lib/Target/Alpha/AlphaTargetMachine.cpp U lib/Target/Alpha/AlphaTargetMachine.h U lib/Target/X86/X86TargetMachine.h U lib/Target/X86/X86.h U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.h U lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.h U lib/Target/X86/X86TargetMachine.cpp U lib/Target/MSP430/MSP430TargetMachine.cpp U lib/Target/MSP430/MSP430TargetMachine.h U lib/Target/CppBackend/CPPTargetMachine.h U lib/Target/CppBackend/CPPBackend.cpp U lib/Target/CBackend/CTargetMachine.h U lib/Target/CBackend/CBackend.cpp U lib/Target/TargetMachine.cpp U lib/Target/IA64/IA64TargetMachine.cpp U lib/Target/IA64/AsmPrinter/IA64AsmPrinter.cpp U lib/Target/IA64/IA64TargetMachine.h U lib/Target/IA64/IA64.h U lib/Target/MSIL/MSILWriter.cpp U lib/Target/CellSPU/SPUTargetMachine.h U lib/Target/CellSPU/SPU.h U lib/Target/CellSPU/AsmPrinter/SPUAsmPrinter.cpp U lib/Target/CellSPU/SPUTargetMachine.cpp U lib/Target/Mips/AsmPrinter/MipsAsmPrinter.cpp U lib/Target/Mips/MipsTargetMachine.cpp U lib/Target/Mips/MipsTargetMachine.h U lib/Target/Mips/Mips.h U lib/Target/Sparc/AsmPrinter/SparcAsmPrinter.cpp U lib/Target/Sparc/SparcTargetMachine.cpp U lib/Target/Sparc/SparcTargetMachine.h U lib/ExecutionEngine/JIT/TargetSelect.cpp U lib/Support/TargetRegistry.cpp git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75820 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-15 20:24:03 +00:00
extern "C" void LLVMInitializePowerPCAsmPrinter() {
TargetRegistry::RegisterAsmPrinter(ThePPC32Target, createPPCAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(ThePPC64Target, createPPCAsmPrinterPass);
}