llvm-6502/include/llvm/CodeGen/MachineInstr.h

753 lines
27 KiB
C
Raw Normal View History

//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the MachineInstr class, which is the
// basic representation for all target dependent machine instructions used by
// the back end.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
#define LLVM_CODEGEN_MACHINEINSTR_H
#include "Support/iterator"
#include <string>
#include <vector>
#include <cassert>
namespace llvm {
class Value;
class Function;
class MachineBasicBlock;
class TargetMachine;
class GlobalValue;
template <typename T> class ilist_traits;
template <typename T> class ilist;
typedef short MachineOpCode;
//===----------------------------------------------------------------------===//
// class MachineOperand
//
// Purpose:
// Representation of each machine instruction operand.
// This class is designed so that you can allocate a vector of operands
// first and initialize each one later.
//
// E.g, for this VM instruction:
// ptr = alloca type, numElements
// we generate 2 machine instructions on the SPARC:
//
// mul Constant, Numelements -> Reg
// add %sp, Reg -> Ptr
//
// Each instruction has 3 operands, listed above. Of those:
// - Reg, NumElements, and Ptr are of operand type MO_Register.
// - Constant is of operand type MO_SignExtendedImmed on the SPARC.
//
// For the register operands, the virtual register type is as follows:
//
// - Reg will be of virtual register type MO_MInstrVirtualReg. The field
// MachineInstr* minstr will point to the instruction that computes reg.
//
// - %sp will be of virtual register type MO_MachineReg.
// The field regNum identifies the machine register.
//
// - NumElements will be of virtual register type MO_VirtualReg.
// The field Value* value identifies the value.
//
// - Ptr will also be of virtual register type MO_VirtualReg.
// Again, the field Value* value identifies the value.
//
//===----------------------------------------------------------------------===//
struct MachineOperand {
private:
// Bit fields of the flags variable used for different operand properties
enum {
DEFFLAG = 0x01, // this is a def of the operand
USEFLAG = 0x02, // this is a use of the operand
HIFLAG32 = 0x04, // operand is %hi32(value_or_immedVal)
LOFLAG32 = 0x08, // operand is %lo32(value_or_immedVal)
HIFLAG64 = 0x10, // operand is %hi64(value_or_immedVal)
LOFLAG64 = 0x20, // operand is %lo64(value_or_immedVal)
PCRELATIVE = 0x40, // Operand is relative to PC, not a global address
};
public:
// UseType - This enum describes how the machine operand is used by
// the instruction. Note that the MachineInstr/Operator class
// currently uses bool arguments to represent this information
// instead of an enum. Eventually this should change over to use
// this _easier to read_ representation instead.
//
enum UseType {
Use = USEFLAG, /// only read
Def = DEFFLAG, /// only written
UseAndDef = Use | Def /// read AND written
};
enum MachineOperandType {
MO_VirtualRegister, // virtual register for *value
MO_MachineRegister, // pre-assigned machine register `regNum'
MO_CCRegister,
MO_SignExtendedImmed,
MO_UnextendedImmed,
MO_PCRelativeDisp,
MO_MachineBasicBlock, // MachineBasicBlock reference
MO_FrameIndex, // Abstract Stack Frame Index
MO_ConstantPoolIndex, // Address of indexed Constant in Constant Pool
MO_ExternalSymbol, // Name of external global symbol
MO_GlobalAddress, // Address of a global value
};
private:
union {
Value* value; // BasicBlockVal for a label operand.
// ConstantVal for a non-address immediate.
// Virtual register for an SSA operand,
// including hidden operands required for
// the generated machine code.
// LLVM global for MO_GlobalAddress.
int immedVal; // Constant value for an explicit constant
MachineBasicBlock *MBB; // For MO_MachineBasicBlock type
std::string *SymbolName; // For MO_ExternalSymbol type
} contents;
char flags; // see bit field definitions above
MachineOperandType opType:8; // Pack into 8 bits efficiently after flags.
int regNum; // register number for an explicit register
// will be set for a value after reg allocation
private:
void zeroContents () {
memset (&contents, 0, sizeof (contents));
}
MachineOperand(int ImmVal = 0, MachineOperandType OpTy = MO_VirtualRegister)
: flags(0), opType(OpTy), regNum(-1) {
zeroContents ();
contents.immedVal = ImmVal;
}
MachineOperand(int Reg, MachineOperandType OpTy, UseType UseTy)
: flags(UseTy), opType(OpTy), regNum(Reg) {
zeroContents ();
}
MachineOperand(Value *V, MachineOperandType OpTy, UseType UseTy,
bool isPCRelative = false)
: flags(UseTy | (isPCRelative?PCRELATIVE:0)), opType(OpTy), regNum(-1) {
zeroContents ();
contents.value = V;
}
MachineOperand(MachineBasicBlock *mbb)
: flags(0), opType(MO_MachineBasicBlock), regNum(-1) {
zeroContents ();
contents.MBB = mbb;
}
MachineOperand(const std::string &SymName, bool isPCRelative)
: flags(isPCRelative?PCRELATIVE:0), opType(MO_ExternalSymbol), regNum(-1) {
zeroContents ();
contents.SymbolName = new std::string (SymName);
}
public:
MachineOperand(const MachineOperand &M)
: flags(M.flags), opType(M.opType), regNum(M.regNum) {
zeroContents ();
contents = M.contents;
if (isExternalSymbol())
contents.SymbolName = new std::string(M.getSymbolName());
}
~MachineOperand() {
if (isExternalSymbol())
delete contents.SymbolName;
}
const MachineOperand &operator=(const MachineOperand &MO) {
if (isExternalSymbol()) // if old operand had a symbol name,
delete contents.SymbolName; // release old memory
contents = MO.contents;
flags = MO.flags;
opType = MO.opType;
regNum = MO.regNum;
if (isExternalSymbol())
contents.SymbolName = new std::string(MO.getSymbolName());
return *this;
}
/// getType - Returns the MachineOperandType for this operand.
///
MachineOperandType getType() const { return opType; }
/// getUseType - Returns the MachineOperandUseType of this operand.
///
UseType getUseType() const { return UseType(flags & (USEFLAG|DEFFLAG)); }
/// isPCRelative - This returns the value of the PCRELATIVE flag, which
/// indicates whether this operand should be emitted as a PC relative value
/// instead of a global address. This is used for operands of the forms:
/// MachineBasicBlock, GlobalAddress, ExternalSymbol
///
bool isPCRelative() const { return (flags & PCRELATIVE) != 0; }
/// isRegister - Return true if this operand is a register operand. The X86
/// backend currently can't decide whether to use MO_MR or MO_VR to represent
/// them, so we accept both.
///
/// Note: The sparc backend should not use this method.
///
bool isRegister() const {
return opType == MO_MachineRegister || opType == MO_VirtualRegister;
}
/// Accessors that tell you what kind of MachineOperand you're looking at.
///
bool isMachineBasicBlock() const { return opType == MO_MachineBasicBlock; }
bool isPCRelativeDisp() const { return opType == MO_PCRelativeDisp; }
bool isImmediate() const {
return opType == MO_SignExtendedImmed || opType == MO_UnextendedImmed;
}
bool isFrameIndex() const { return opType == MO_FrameIndex; }
bool isConstantPoolIndex() const { return opType == MO_ConstantPoolIndex; }
bool isGlobalAddress() const { return opType == MO_GlobalAddress; }
bool isExternalSymbol() const { return opType == MO_ExternalSymbol; }
/// getVRegValueOrNull - Get the Value* out of a MachineOperand if it
/// has one. This is deprecated and only used by the SPARC v9 backend.
///
Value* getVRegValueOrNull() const {
return (opType == MO_VirtualRegister || opType == MO_CCRegister ||
isPCRelativeDisp()) ? contents.value : NULL;
}
/// MachineOperand accessors that only work on certain types of
/// MachineOperand...
///
Value* getVRegValue() const {
assert ((opType == MO_VirtualRegister || opType == MO_CCRegister
|| isPCRelativeDisp()) && "Wrong MachineOperand accessor");
return contents.value;
}
int getMachineRegNum() const {
assert(opType == MO_MachineRegister && "Wrong MachineOperand accessor");
return regNum;
}
int getImmedValue() const {
assert(isImmediate() && "Wrong MachineOperand accessor");
return contents.immedVal;
}
MachineBasicBlock *getMachineBasicBlock() const {
assert(isMachineBasicBlock() && "Wrong MachineOperand accessor");
return contents.MBB;
}
void setMachineBasicBlock(MachineBasicBlock *MBB) {
assert(isMachineBasicBlock() && "Wrong MachineOperand accessor");
contents.MBB = MBB;
}
int getFrameIndex() const {
assert(isFrameIndex() && "Wrong MachineOperand accessor");
return contents.immedVal;
}
unsigned getConstantPoolIndex() const {
assert(isConstantPoolIndex() && "Wrong MachineOperand accessor");
return contents.immedVal;
}
GlobalValue *getGlobal() const {
assert(isGlobalAddress() && "Wrong MachineOperand accessor");
return (GlobalValue*)contents.value;
}
const std::string &getSymbolName() const {
assert(isExternalSymbol() && "Wrong MachineOperand accessor");
return *contents.SymbolName;
}
/// MachineOperand methods for testing that work on any kind of
/// MachineOperand...
///
bool isUse () const { return flags & USEFLAG; }
MachineOperand& setUse () { flags |= USEFLAG; return *this; }
bool isDef () const { return flags & DEFFLAG; }
MachineOperand& setDef () { flags |= DEFFLAG; return *this; }
bool isHiBits32 () const { return flags & HIFLAG32; }
bool isLoBits32 () const { return flags & LOFLAG32; }
bool isHiBits64 () const { return flags & HIFLAG64; }
bool isLoBits64 () const { return flags & LOFLAG64; }
/// hasAllocatedReg - Returns true iff a machine register has been
/// allocated to this operand.
///
bool hasAllocatedReg() const {
return (regNum >= 0 &&
(opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_MachineRegister));
}
/// getReg - Returns the register number. It is a runtime error to call this
/// if a register is not allocated.
///
unsigned getReg() const {
assert(hasAllocatedReg());
return regNum;
}
/// MachineOperand mutators...
///
void setReg(unsigned Reg) {
// This method's comment used to say: 'TODO: get rid of this duplicate
// code.' It's not clear where the duplication is.
assert(hasAllocatedReg() && "This operand cannot have a register number!");
regNum = Reg;
}
void setValueReg(Value *val) {
assert(getVRegValueOrNull() != 0 && "Original operand must of type Value*");
contents.value = val;
}
void setImmedValue(int immVal) {
assert(isImmediate() && "Wrong MachineOperand mutator");
contents.immedVal = immVal;
}
friend std::ostream& operator<<(std::ostream& os, const MachineOperand& mop);
/// markHi32, markLo32, etc. - These methods are deprecated and only used by
/// the SPARC v9 back-end.
///
void markHi32() { flags |= HIFLAG32; }
void markLo32() { flags |= LOFLAG32; }
void markHi64() { flags |= HIFLAG64; }
void markLo64() { flags |= LOFLAG64; }
private:
/// setRegForValue - Replaces the Value with its corresponding physical
/// register after register allocation is complete. This is deprecated
/// and only used by the SPARC v9 back-end.
///
void setRegForValue(int reg) {
assert(opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_MachineRegister);
regNum = reg;
}
friend class MachineInstr;
};
//===----------------------------------------------------------------------===//
// class MachineInstr
//
// Purpose:
// Representation of each machine instruction.
//
// MachineOpCode must be an enum, defined separately for each target.
// E.g., It is defined in SparcInstructionSelection.h for the SPARC.
//
// There are 2 kinds of operands:
//
// (1) Explicit operands of the machine instruction in vector operands[]
//
// (2) "Implicit operands" are values implicitly used or defined by the
// machine instruction, such as arguments to a CALL, return value of
// a CALL (if any), and return value of a RETURN.
//===----------------------------------------------------------------------===//
class MachineInstr {
short Opcode; // the opcode
unsigned char numImplicitRefs; // number of implicit operands
std::vector<MachineOperand> operands; // the operands
MachineInstr* prev, *next; // links for our intrusive list
MachineBasicBlock* parent; // pointer to the owning basic block
// OperandComplete - Return true if it's illegal to add a new operand
bool OperandsComplete() const;
//Constructor used by clone() method
MachineInstr(const MachineInstr&);
void operator=(const MachineInstr&); // DO NOT IMPLEMENT
// Intrusive list support
//
friend class ilist_traits<MachineInstr>;
public:
MachineInstr(short Opcode, unsigned numOperands);
/// MachineInstr ctor - This constructor only does a _reserve_ of the
/// operands, not a resize for them. It is expected that if you use this that
/// you call add* methods below to fill up the operands, instead of the Set
/// methods. Eventually, the "resizing" ctors will be phased out.
///
MachineInstr(short Opcode, unsigned numOperands, bool XX, bool YY);
/// MachineInstr ctor - Work exactly the same as the ctor above, except that
/// the MachineInstr is created and added to the end of the specified basic
/// block.
///
MachineInstr(MachineBasicBlock *MBB, short Opcode, unsigned numOps);
~MachineInstr();
const MachineBasicBlock* getParent() const { return parent; }
MachineBasicBlock* getParent() { return parent; }
/// getOpcode - Returns the opcode of this MachineInstr.
///
const int getOpcode() const { return Opcode; }
/// Access to explicit operands of the instruction.
///
unsigned getNumOperands() const { return operands.size() - numImplicitRefs; }
const MachineOperand& getOperand(unsigned i) const {
assert(i < getNumOperands() && "getOperand() out of range!");
return operands[i];
}
MachineOperand& getOperand(unsigned i) {
assert(i < getNumOperands() && "getOperand() out of range!");
return operands[i];
}
//
// Access to explicit or implicit operands of the instruction
// This returns the i'th entry in the operand vector.
// That represents the i'th explicit operand or the (i-N)'th implicit operand,
// depending on whether i < N or i >= N.
//
const MachineOperand& getExplOrImplOperand(unsigned i) const {
assert(i < operands.size() && "getExplOrImplOperand() out of range!");
return (i < getNumOperands()? getOperand(i)
: getImplicitOp(i - getNumOperands()));
}
//
// Access to implicit operands of the instruction
//
unsigned getNumImplicitRefs() const{ return numImplicitRefs; }
MachineOperand& getImplicitOp(unsigned i) {
assert(i < numImplicitRefs && "implicit ref# out of range!");
return operands[i + operands.size() - numImplicitRefs];
}
const MachineOperand& getImplicitOp(unsigned i) const {
assert(i < numImplicitRefs && "implicit ref# out of range!");
return operands[i + operands.size() - numImplicitRefs];
}
Value* getImplicitRef(unsigned i) {
return getImplicitOp(i).getVRegValue();
}
const Value* getImplicitRef(unsigned i) const {
return getImplicitOp(i).getVRegValue();
}
void addImplicitRef(Value* V, bool isDef = false, bool isDefAndUse = false) {
++numImplicitRefs;
addRegOperand(V, isDef, isDefAndUse);
}
void setImplicitRef(unsigned i, Value* V) {
assert(i < getNumImplicitRefs() && "setImplicitRef() out of range!");
SetMachineOperandVal(i + getNumOperands(),
MachineOperand::MO_VirtualRegister, V);
}
/// clone - Create a copy of 'this' instruction that is identical in
/// all ways except the the instruction has no parent, prev, or next.
MachineInstr* clone() const;
//
// Debugging support
//
void print(std::ostream &OS, const TargetMachine *TM) const;
void dump() const;
friend std::ostream& operator<<(std::ostream& os, const MachineInstr& minstr);
//
// Define iterators to access the Value operands of the Machine Instruction.
// Note that these iterators only enumerate the explicit operands.
// begin() and end() are defined to produce these iterators...
//
template<class _MI, class _V> class ValOpIterator;
typedef ValOpIterator<const MachineInstr*,const Value*> const_val_op_iterator;
typedef ValOpIterator< MachineInstr*, Value*> val_op_iterator;
//===--------------------------------------------------------------------===//
// Accessors to add operands when building up machine instructions
//
/// addRegOperand - Add a MO_VirtualRegister operand to the end of the
/// operands list...
///
void addRegOperand(Value *V, bool isDef, bool isDefAndUse=false) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(
MachineOperand(V, MachineOperand::MO_VirtualRegister,
!isDef ? MachineOperand::Use :
(isDefAndUse ? MachineOperand::UseAndDef :
MachineOperand::Def)));
}
void addRegOperand(Value *V,
MachineOperand::UseType UTy = MachineOperand::Use,
bool isPCRelative = false) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(V, MachineOperand::MO_VirtualRegister,
UTy, isPCRelative));
}
void addCCRegOperand(Value *V,
MachineOperand::UseType UTy = MachineOperand::Use) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(V, MachineOperand::MO_CCRegister, UTy,
false));
}
/// addRegOperand - Add a symbolic virtual register reference...
///
void addRegOperand(int reg, bool isDef) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(
MachineOperand(reg, MachineOperand::MO_VirtualRegister,
isDef ? MachineOperand::Def : MachineOperand::Use));
}
/// addRegOperand - Add a symbolic virtual register reference...
///
void addRegOperand(int reg,
MachineOperand::UseType UTy = MachineOperand::Use) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(
MachineOperand(reg, MachineOperand::MO_VirtualRegister, UTy));
}
/// addPCDispOperand - Add a PC relative displacement operand to the MI
///
void addPCDispOperand(Value *V) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(
MachineOperand(V, MachineOperand::MO_PCRelativeDisp,MachineOperand::Use));
}
/// addMachineRegOperand - Add a virtual register operand to this MachineInstr
///
void addMachineRegOperand(int reg, bool isDef) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(
MachineOperand(reg, MachineOperand::MO_MachineRegister,
isDef ? MachineOperand::Def : MachineOperand::Use));
}
/// addMachineRegOperand - Add a virtual register operand to this MachineInstr
///
void addMachineRegOperand(int reg,
MachineOperand::UseType UTy = MachineOperand::Use) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(
MachineOperand(reg, MachineOperand::MO_MachineRegister, UTy));
}
/// addZeroExtImmOperand - Add a zero extended constant argument to the
/// machine instruction.
///
void addZeroExtImmOperand(int intValue) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(
MachineOperand(intValue, MachineOperand::MO_UnextendedImmed));
}
/// addSignExtImmOperand - Add a zero extended constant argument to the
/// machine instruction.
///
void addSignExtImmOperand(int intValue) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(
MachineOperand(intValue, MachineOperand::MO_SignExtendedImmed));
}
void addMachineBasicBlockOperand(MachineBasicBlock *MBB) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(MBB));
}
/// addFrameIndexOperand - Add an abstract frame index to the instruction
///
void addFrameIndexOperand(unsigned Idx) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(Idx, MachineOperand::MO_FrameIndex));
}
/// addConstantPoolndexOperand - Add a constant pool object index to the
/// instruction.
///
void addConstantPoolIndexOperand(unsigned I) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(MachineOperand(I, MachineOperand::MO_ConstantPoolIndex));
}
void addGlobalAddressOperand(GlobalValue *GV, bool isPCRelative) {
assert(!OperandsComplete() &&
"Trying to add an operand to a machine instr that is already done!");
operands.push_back(
MachineOperand((Value*)GV, MachineOperand::MO_GlobalAddress,
MachineOperand::Use, isPCRelative));
}
/// addExternalSymbolOperand - Add an external symbol operand to this instr
///
void addExternalSymbolOperand(const std::string &SymName, bool isPCRelative) {
operands.push_back(MachineOperand(SymName, isPCRelative));
}
//===--------------------------------------------------------------------===//
// Accessors used to modify instructions in place.
//
// FIXME: Move this stuff to MachineOperand itself!
/// replace - Support to rewrite a machine instruction in place: for now,
/// simply replace() and then set new operands with Set.*Operand methods
/// below.
///
void replace(short Opcode, unsigned numOperands);
/// setOpcode - Replace the opcode of the current instruction with a new one.
///
void setOpcode(unsigned Op) { Opcode = Op; }
/// RemoveOperand - Erase an operand from an instruction, leaving it with one
/// fewer operand than it started with.
///
void RemoveOperand(unsigned i) {
operands.erase(operands.begin()+i);
}
// Access to set the operands when building the machine instruction
//
void SetMachineOperandVal(unsigned i,
MachineOperand::MachineOperandType operandType,
Value* V);
void SetMachineOperandConst(unsigned i,
MachineOperand::MachineOperandType operandType,
int intValue);
void SetMachineOperandReg(unsigned i, int regNum);
unsigned substituteValue(const Value* oldVal, Value* newVal,
bool defsOnly, bool notDefsAndUses,
bool& someArgsWereIgnored);
// SetRegForOperand -
// SetRegForImplicitRef -
// Mark an explicit or implicit operand with its allocated physical register.
//
void SetRegForOperand(unsigned i, int regNum);
void SetRegForImplicitRef(unsigned i, int regNum);
//
// Iterator to enumerate machine operands.
//
template<class MITy, class VTy>
class ValOpIterator : public forward_iterator<VTy, ptrdiff_t> {
unsigned i;
MITy MI;
void skipToNextVal() {
while (i < MI->getNumOperands() &&
!( (MI->getOperand(i).getType() == MachineOperand::MO_VirtualRegister ||
MI->getOperand(i).getType() == MachineOperand::MO_CCRegister)
&& MI->getOperand(i).getVRegValue() != 0))
++i;
}
inline ValOpIterator(MITy mi, unsigned I) : i(I), MI(mi) {
skipToNextVal();
}
public:
typedef ValOpIterator<MITy, VTy> _Self;
inline VTy operator*() const {
return MI->getOperand(i).getVRegValue();
}
const MachineOperand &getMachineOperand() const { return MI->getOperand(i);}
MachineOperand &getMachineOperand() { return MI->getOperand(i);}
inline VTy operator->() const { return operator*(); }
inline bool isUse() const { return MI->getOperand(i).isUse(); }
inline bool isDef() const { return MI->getOperand(i).isDef(); }
inline _Self& operator++() { i++; skipToNextVal(); return *this; }
inline _Self operator++(int) { _Self tmp = *this; ++*this; return tmp; }
inline bool operator==(const _Self &y) const {
return i == y.i;
}
inline bool operator!=(const _Self &y) const {
return !operator==(y);
}
static _Self begin(MITy MI) {
return _Self(MI, 0);
}
static _Self end(MITy MI) {
return _Self(MI, MI->getNumOperands());
}
};
// define begin() and end()
val_op_iterator begin() { return val_op_iterator::begin(this); }
val_op_iterator end() { return val_op_iterator::end(this); }
const_val_op_iterator begin() const {
return const_val_op_iterator::begin(this);
}
const_val_op_iterator end() const {
return const_val_op_iterator::end(this);
}
};
//===----------------------------------------------------------------------===//
// Debugging Support
std::ostream& operator<<(std::ostream &OS, const MachineInstr &MI);
std::ostream& operator<<(std::ostream &OS, const MachineOperand &MO);
void PrintMachineInstructions(const Function *F);
} // End llvm namespace
#endif