llvm-6502/include/llvm/Constants.h

855 lines
35 KiB
C
Raw Normal View History

//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// @file
/// This file contains the declarations for the subclasses of Constant,
/// which represent the different flavors of constant values that live in LLVM.
/// Note that Constants are immutable (once created they never change) and are
/// fully shared by structural equivalence. This means that two structurally
/// equivalent constants will always have the same address. Constant's are
/// created on demand as needed and never deleted: thus clients don't have to
/// worry about the lifetime of the objects.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CONSTANTS_H
#define LLVM_CONSTANTS_H
#include "llvm/Constant.h"
#include "llvm/Type.h"
#include "llvm/OperandTraits.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/SmallVector.h"
namespace llvm {
class ArrayType;
class StructType;
class PointerType;
class VectorType;
template<class ConstantClass, class TypeClass, class ValType>
struct ConstantCreator;
template<class ConstantClass, class TypeClass>
struct ConvertConstantType;
//===----------------------------------------------------------------------===//
/// This is the shared class of boolean and integer constants. This class
/// represents both boolean and integral constants.
/// @brief Class for constant integers.
class ConstantInt : public Constant {
static ConstantInt *TheTrueVal, *TheFalseVal;
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT
ConstantInt(const IntegerType *Ty, const APInt& V);
APInt Val;
protected:
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
public:
static ConstantInt* getTrue(LLVMContext &Context);
static ConstantInt* getFalse(LLVMContext &Context);
/// If Ty is a vector type, return a Constant with a splat of the given
/// value. Otherwise return a ConstantInt for the given value.
static Constant* get(const Type* Ty, uint64_t V, bool isSigned = false);
/// Return a ConstantInt with the specified integer value for the specified
/// type. If the type is wider than 64 bits, the value will be zero-extended
/// to fit the type, unless isSigned is true, in which case the value will
/// be interpreted as a 64-bit signed integer and sign-extended to fit
/// the type.
/// @brief Get a ConstantInt for a specific value.
static ConstantInt* get(const IntegerType* Ty, uint64_t V,
bool isSigned = false);
/// Return a ConstantInt with the specified value for the specified type. The
/// value V will be canonicalized to a an unsigned APInt. Accessing it with
/// either getSExtValue() or getZExtValue() will yield a correctly sized and
/// signed value for the type Ty.
/// @brief Get a ConstantInt for a specific signed value.
static ConstantInt* getSigned(const IntegerType* Ty, int64_t V);
static Constant *getSigned(const Type *Ty, int64_t V);
/// Return a ConstantInt with the specified value and an implied Type. The
/// type is the integer type that corresponds to the bit width of the value.
static ConstantInt* get(LLVMContext &Context, const APInt& V);
/// Return a ConstantInt constructed from the string strStart with the given
/// radix.
static ConstantInt* get(const IntegerType* Ty, const StringRef& Str,
uint8_t radix);
/// If Ty is a vector type, return a Constant with a splat of the given
/// value. Otherwise return a ConstantInt for the given value.
static Constant* get(const Type* Ty, const APInt& V);
/// Return the constant as an APInt value reference. This allows clients to
/// obtain a copy of the value, with all its precision in tact.
/// @brief Return the constant's value.
inline const APInt& getValue() const {
return Val;
}
/// getBitWidth - Return the bitwidth of this constant.
unsigned getBitWidth() const { return Val.getBitWidth(); }
/// Return the constant as a 64-bit unsigned integer value after it
/// has been zero extended as appropriate for the type of this constant. Note
/// that this method can assert if the value does not fit in 64 bits.
/// @deprecated
/// @brief Return the zero extended value.
inline uint64_t getZExtValue() const {
return Val.getZExtValue();
}
/// Return the constant as a 64-bit integer value after it has been sign
/// extended as appropriate for the type of this constant. Note that
/// this method can assert if the value does not fit in 64 bits.
/// @deprecated
/// @brief Return the sign extended value.
inline int64_t getSExtValue() const {
return Val.getSExtValue();
}
/// A helper method that can be used to determine if the constant contained
/// within is equal to a constant. This only works for very small values,
/// because this is all that can be represented with all types.
/// @brief Determine if this constant's value is same as an unsigned char.
bool equalsInt(uint64_t V) const {
return Val == V;
}
/// getType - Specialize the getType() method to always return an IntegerType,
/// which reduces the amount of casting needed in parts of the compiler.
///
inline const IntegerType *getType() const {
return reinterpret_cast<const IntegerType*>(Value::getType());
}
/// This static method returns true if the type Ty is big enough to
/// represent the value V. This can be used to avoid having the get method
/// assert when V is larger than Ty can represent. Note that there are two
/// versions of this method, one for unsigned and one for signed integers.
/// Although ConstantInt canonicalizes everything to an unsigned integer,
/// the signed version avoids callers having to convert a signed quantity
/// to the appropriate unsigned type before calling the method.
/// @returns true if V is a valid value for type Ty
/// @brief Determine if the value is in range for the given type.
static bool isValueValidForType(const Type *Ty, uint64_t V);
static bool isValueValidForType(const Type *Ty, int64_t V);
/// This function will return true iff this constant represents the "null"
/// value that would be returned by the getNullValue method.
/// @returns true if this is the null integer value.
/// @brief Determine if the value is null.
virtual bool isNullValue() const {
return Val == 0;
}
/// This is just a convenience method to make client code smaller for a
/// common code. It also correctly performs the comparison without the
/// potential for an assertion from getZExtValue().
bool isZero() const {
return Val == 0;
}
/// This is just a convenience method to make client code smaller for a
/// common case. It also correctly performs the comparison without the
/// potential for an assertion from getZExtValue().
/// @brief Determine if the value is one.
bool isOne() const {
return Val == 1;
}
/// This function will return true iff every bit in this constant is set
/// to true.
/// @returns true iff this constant's bits are all set to true.
/// @brief Determine if the value is all ones.
bool isAllOnesValue() const {
return Val.isAllOnesValue();
}
/// This function will return true iff this constant represents the largest
/// value that may be represented by the constant's type.
/// @returns true iff this is the largest value that may be represented
/// by this type.
/// @brief Determine if the value is maximal.
bool isMaxValue(bool isSigned) const {
if (isSigned)
return Val.isMaxSignedValue();
else
return Val.isMaxValue();
}
/// This function will return true iff this constant represents the smallest
/// value that may be represented by this constant's type.
/// @returns true if this is the smallest value that may be represented by
/// this type.
/// @brief Determine if the value is minimal.
bool isMinValue(bool isSigned) const {
if (isSigned)
return Val.isMinSignedValue();
else
return Val.isMinValue();
}
/// This function will return true iff this constant represents a value with
/// active bits bigger than 64 bits or a value greater than the given uint64_t
/// value.
/// @returns true iff this constant is greater or equal to the given number.
/// @brief Determine if the value is greater or equal to the given number.
bool uge(uint64_t Num) {
return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
}
/// getLimitedValue - If the value is smaller than the specified limit,
/// return it, otherwise return the limit value. This causes the value
/// to saturate to the limit.
/// @returns the min of the value of the constant and the specified value
/// @brief Get the constant's value with a saturation limit
uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
return Val.getLimitedValue(Limit);
}
/// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const ConstantInt *) { return true; }
static bool classof(const Value *V) {
return V->getValueID() == ConstantIntVal;
}
};
//===----------------------------------------------------------------------===//
/// ConstantFP - Floating Point Values [float, double]
///
class ConstantFP : public Constant {
APFloat Val;
void *operator new(size_t, unsigned);// DO NOT IMPLEMENT
ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT
friend class LLVMContextImpl;
protected:
ConstantFP(const Type *Ty, const APFloat& V);
protected:
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
public:
/// Floating point negation must be implemented with f(x) = -0.0 - x. This
/// method returns the negative zero constant for floating point or vector
/// floating point types; for all other types, it returns the null value.
static Constant* getZeroValueForNegation(const Type* Ty);
/// get() - This returns a ConstantFP, or a vector containing a splat of a
/// ConstantFP, for the specified value in the specified type. This should
/// only be used for simple constant values like 2.0/1.0 etc, that are
/// known-valid both as host double and as the target format.
static Constant* get(const Type* Ty, double V);
static Constant* get(const Type* Ty, const StringRef& Str);
static ConstantFP* get(LLVMContext &Context, const APFloat& V);
static ConstantFP* getNegativeZero(const Type* Ty);
static ConstantFP* getInfinity(const Type* Ty, bool negative = false);
/// isValueValidForType - return true if Ty is big enough to represent V.
static bool isValueValidForType(const Type *Ty, const APFloat& V);
inline const APFloat& getValueAPF() const { return Val; }
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue. Don't depend on == for doubles to tell us it's zero, it
/// considers -0.0 to be null as well as 0.0. :(
virtual bool isNullValue() const;
/// isNegativeZeroValue - Return true if the value is what would be returned
/// by getZeroValueForNegation.
virtual bool isNegativeZeroValue() const {
return Val.isZero() && Val.isNegative();
}
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values. The version with a double operand is retained
/// because it's so convenient to write isExactlyValue(2.0), but please use
/// it only for simple constants.
bool isExactlyValue(const APFloat& V) const;
bool isExactlyValue(double V) const {
bool ignored;
// convert is not supported on this type
if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
return false;
APFloat FV(V);
FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
return isExactlyValue(FV);
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ConstantFP *) { return true; }
static bool classof(const Value *V) {
return V->getValueID() == ConstantFPVal;
}
};
//===----------------------------------------------------------------------===//
/// ConstantAggregateZero - All zero aggregate value
///
class ConstantAggregateZero : public Constant {
friend struct ConstantCreator<ConstantAggregateZero, Type, char>;
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT
protected:
explicit ConstantAggregateZero(const Type *ty)
: Constant(ty, ConstantAggregateZeroVal, 0, 0) {}
protected:
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
public:
static ConstantAggregateZero* get(const Type* Ty);
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue.
virtual bool isNullValue() const { return true; }
virtual void destroyConstant();
/// Methods for support type inquiry through isa, cast, and dyn_cast:
///
static bool classof(const ConstantAggregateZero *) { return true; }
static bool classof(const Value *V) {
return V->getValueID() == ConstantAggregateZeroVal;
}
};
//===----------------------------------------------------------------------===//
/// ConstantArray - Constant Array Declarations
///
class ConstantArray : public Constant {
friend struct ConstantCreator<ConstantArray, ArrayType,
std::vector<Constant*> >;
ConstantArray(const ConstantArray &); // DO NOT IMPLEMENT
protected:
ConstantArray(const ArrayType *T, const std::vector<Constant*> &Val);
public:
// ConstantArray accessors
static Constant* get(const ArrayType* T, const std::vector<Constant*>& V);
static Constant* get(const ArrayType* T, Constant* const* Vals,
unsigned NumVals);
/// This method constructs a ConstantArray and initializes it with a text
/// string. The default behavior (AddNull==true) causes a null terminator to
/// be placed at the end of the array. This effectively increases the length
/// of the array by one (you've been warned). However, in some situations
/// this is not desired so if AddNull==false then the string is copied without
/// null termination.
static Constant* get(LLVMContext &Context, const StringRef &Initializer,
bool AddNull = true);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
/// getType - Specialize the getType() method to always return an ArrayType,
/// which reduces the amount of casting needed in parts of the compiler.
///
inline const ArrayType *getType() const {
return reinterpret_cast<const ArrayType*>(Value::getType());
}
/// isString - This method returns true if the array is an array of i8 and
/// the elements of the array are all ConstantInt's.
bool isString() const;
/// isCString - This method returns true if the array is a string (see
/// @verbatim
/// isString) and it ends in a null byte \0 and does not contains any other
/// @endverbatim
/// null bytes except its terminator.
bool isCString() const;
/// getAsString - If this array is isString(), then this method converts the
/// array to an std::string and returns it. Otherwise, it asserts out.
///
std::string getAsString() const;
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue. This always returns false because zero arrays are always
/// created as ConstantAggregateZero objects.
virtual bool isNullValue() const { return false; }
virtual void destroyConstant();
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ConstantArray *) { return true; }
static bool classof(const Value *V) {
return V->getValueID() == ConstantArrayVal;
}
};
template <>
struct OperandTraits<ConstantArray> : public VariadicOperandTraits<> {
};
DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantArray, Constant)
//===----------------------------------------------------------------------===//
// ConstantStruct - Constant Struct Declarations
//
class ConstantStruct : public Constant {
friend struct ConstantCreator<ConstantStruct, StructType,
std::vector<Constant*> >;
ConstantStruct(const ConstantStruct &); // DO NOT IMPLEMENT
protected:
ConstantStruct(const StructType *T, const std::vector<Constant*> &Val);
public:
// ConstantStruct accessors
static Constant* get(const StructType* T, const std::vector<Constant*>& V);
static Constant* get(LLVMContext &Context,
const std::vector<Constant*>& V, bool Packed);
static Constant* get(LLVMContext &Context,
Constant* const *Vals, unsigned NumVals,
bool Packed);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
/// getType() specialization - Reduce amount of casting...
///
inline const StructType *getType() const {
return reinterpret_cast<const StructType*>(Value::getType());
}
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue. This always returns false because zero structs are always
/// created as ConstantAggregateZero objects.
virtual bool isNullValue() const {
return false;
}
virtual void destroyConstant();
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ConstantStruct *) { return true; }
static bool classof(const Value *V) {
return V->getValueID() == ConstantStructVal;
}
};
template <>
struct OperandTraits<ConstantStruct> : public VariadicOperandTraits<> {
};
DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantStruct, Constant)
//===----------------------------------------------------------------------===//
/// ConstantVector - Constant Vector Declarations
///
class ConstantVector : public Constant {
friend struct ConstantCreator<ConstantVector, VectorType,
std::vector<Constant*> >;
ConstantVector(const ConstantVector &); // DO NOT IMPLEMENT
protected:
ConstantVector(const VectorType *T, const std::vector<Constant*> &Val);
public:
// ConstantVector accessors
static Constant* get(const VectorType* T, const std::vector<Constant*>& V);
static Constant* get(const std::vector<Constant*>& V);
static Constant* get(Constant* const* Vals, unsigned NumVals);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
/// getType - Specialize the getType() method to always return a VectorType,
/// which reduces the amount of casting needed in parts of the compiler.
///
inline const VectorType *getType() const {
return reinterpret_cast<const VectorType*>(Value::getType());
}
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue. This always returns false because zero vectors are always
/// created as ConstantAggregateZero objects.
virtual bool isNullValue() const { return false; }
/// This function will return true iff every element in this vector constant
/// is set to all ones.
/// @returns true iff this constant's emements are all set to all ones.
/// @brief Determine if the value is all ones.
bool isAllOnesValue() const;
/// getSplatValue - If this is a splat constant, meaning that all of the
/// elements have the same value, return that value. Otherwise return NULL.
Constant *getSplatValue();
virtual void destroyConstant();
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ConstantVector *) { return true; }
static bool classof(const Value *V) {
return V->getValueID() == ConstantVectorVal;
}
};
template <>
struct OperandTraits<ConstantVector> : public VariadicOperandTraits<> {
};
DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantVector, Constant)
//===----------------------------------------------------------------------===//
/// ConstantPointerNull - a constant pointer value that points to null
///
class ConstantPointerNull : public Constant {
friend struct ConstantCreator<ConstantPointerNull, PointerType, char>;
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT
protected:
explicit ConstantPointerNull(const PointerType *T)
: Constant(reinterpret_cast<const Type*>(T),
Value::ConstantPointerNullVal, 0, 0) {}
protected:
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
public:
/// get() - Static factory methods - Return objects of the specified value
static ConstantPointerNull *get(const PointerType *T);
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue.
virtual bool isNullValue() const { return true; }
virtual void destroyConstant();
/// getType - Specialize the getType() method to always return an PointerType,
/// which reduces the amount of casting needed in parts of the compiler.
///
inline const PointerType *getType() const {
return reinterpret_cast<const PointerType*>(Value::getType());
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ConstantPointerNull *) { return true; }
static bool classof(const Value *V) {
return V->getValueID() == ConstantPointerNullVal;
}
};
/// ConstantExpr - a constant value that is initialized with an expression using
/// other constant values.
///
/// This class uses the standard Instruction opcodes to define the various
/// constant expressions. The Opcode field for the ConstantExpr class is
/// maintained in the Value::SubclassData field.
class ConstantExpr : public Constant {
friend struct ConstantCreator<ConstantExpr,Type,
std::pair<unsigned, std::vector<Constant*> > >;
friend struct ConvertConstantType<ConstantExpr, Type>;
protected:
ConstantExpr(const Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
: Constant(ty, ConstantExprVal, Ops, NumOps) {
// Operation type (an Instruction opcode) is stored as the SubclassData.
SubclassData = Opcode;
}
// These private methods are used by the type resolution code to create
// ConstantExprs in intermediate forms.
static Constant *getTy(const Type *Ty, unsigned Opcode,
Constant *C1, Constant *C2,
unsigned Flags = 0);
static Constant *getCompareTy(unsigned short pred, Constant *C1,
Constant *C2);
static Constant *getSelectTy(const Type *Ty,
Constant *C1, Constant *C2, Constant *C3);
static Constant *getGetElementPtrTy(const Type *Ty, Constant *C,
Value* const *Idxs, unsigned NumIdxs);
static Constant *getInBoundsGetElementPtrTy(const Type *Ty, Constant *C,
Value* const *Idxs,
unsigned NumIdxs);
static Constant *getExtractElementTy(const Type *Ty, Constant *Val,
Constant *Idx);
static Constant *getInsertElementTy(const Type *Ty, Constant *Val,
Constant *Elt, Constant *Idx);
static Constant *getShuffleVectorTy(const Type *Ty, Constant *V1,
Constant *V2, Constant *Mask);
static Constant *getExtractValueTy(const Type *Ty, Constant *Agg,
const unsigned *Idxs, unsigned NumIdxs);
static Constant *getInsertValueTy(const Type *Ty, Constant *Agg,
Constant *Val,
const unsigned *Idxs, unsigned NumIdxs);
public:
// Static methods to construct a ConstantExpr of different kinds. Note that
// these methods may return a object that is not an instance of the
// ConstantExpr class, because they will attempt to fold the constant
// expression into something simpler if possible.
/// Cast constant expr
///
/// getAlignOf constant expr - computes the alignment of a type in a target
/// independent way (Note: the return type is an i32; Note: assumes that i8
/// is byte aligned).
static Constant* getAlignOf(const Type* Ty);
/// getSizeOf constant expr - computes the size of a type in a target
/// independent way (Note: the return type is an i64).
///
static Constant* getSizeOf(const Type* Ty);
/// getOffsetOf constant expr - computes the offset of a field in a target
/// independent way (Note: the return type is an i64).
///
static Constant* getOffsetOf(const StructType* Ty, unsigned FieldNo);
static Constant* getNeg(Constant* C);
static Constant* getFNeg(Constant* C);
static Constant* getNot(Constant* C);
static Constant* getAdd(Constant* C1, Constant* C2);
static Constant* getFAdd(Constant* C1, Constant* C2);
static Constant* getSub(Constant* C1, Constant* C2);
static Constant* getFSub(Constant* C1, Constant* C2);
static Constant* getMul(Constant* C1, Constant* C2);
static Constant* getFMul(Constant* C1, Constant* C2);
static Constant* getUDiv(Constant* C1, Constant* C2);
static Constant* getSDiv(Constant* C1, Constant* C2);
static Constant* getFDiv(Constant* C1, Constant* C2);
static Constant* getURem(Constant* C1, Constant* C2);
static Constant* getSRem(Constant* C1, Constant* C2);
static Constant* getFRem(Constant* C1, Constant* C2);
static Constant* getAnd(Constant* C1, Constant* C2);
static Constant* getOr(Constant* C1, Constant* C2);
static Constant* getXor(Constant* C1, Constant* C2);
static Constant* getShl(Constant* C1, Constant* C2);
static Constant* getLShr(Constant* C1, Constant* C2);
static Constant* getAShr(Constant* C1, Constant* C2);
static Constant *getTrunc (Constant *C, const Type *Ty);
static Constant *getSExt (Constant *C, const Type *Ty);
static Constant *getZExt (Constant *C, const Type *Ty);
static Constant *getFPTrunc (Constant *C, const Type *Ty);
static Constant *getFPExtend(Constant *C, const Type *Ty);
static Constant *getUIToFP (Constant *C, const Type *Ty);
static Constant *getSIToFP (Constant *C, const Type *Ty);
static Constant *getFPToUI (Constant *C, const Type *Ty);
static Constant *getFPToSI (Constant *C, const Type *Ty);
static Constant *getPtrToInt(Constant *C, const Type *Ty);
static Constant *getIntToPtr(Constant *C, const Type *Ty);
static Constant *getBitCast (Constant *C, const Type *Ty);
static Constant* getNSWAdd(Constant* C1, Constant* C2);
static Constant* getNSWSub(Constant* C1, Constant* C2);
static Constant* getExactSDiv(Constant* C1, Constant* C2);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
// @brief Convenience function for getting one of the casting operations
// using a CastOps opcode.
static Constant *getCast(
unsigned ops, ///< The opcode for the conversion
Constant *C, ///< The constant to be converted
const Type *Ty ///< The type to which the constant is converted
);
// @brief Create a ZExt or BitCast cast constant expression
static Constant *getZExtOrBitCast(
Constant *C, ///< The constant to zext or bitcast
const Type *Ty ///< The type to zext or bitcast C to
);
// @brief Create a SExt or BitCast cast constant expression
static Constant *getSExtOrBitCast(
Constant *C, ///< The constant to sext or bitcast
const Type *Ty ///< The type to sext or bitcast C to
);
// @brief Create a Trunc or BitCast cast constant expression
static Constant *getTruncOrBitCast(
Constant *C, ///< The constant to trunc or bitcast
const Type *Ty ///< The type to trunc or bitcast C to
);
/// @brief Create a BitCast or a PtrToInt cast constant expression
static Constant *getPointerCast(
Constant *C, ///< The pointer value to be casted (operand 0)
const Type *Ty ///< The type to which cast should be made
);
/// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
static Constant *getIntegerCast(
Constant *C, ///< The integer constant to be casted
const Type *Ty, ///< The integer type to cast to
bool isSigned ///< Whether C should be treated as signed or not
);
/// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
static Constant *getFPCast(
Constant *C, ///< The integer constant to be casted
const Type *Ty ///< The integer type to cast to
);
/// @brief Return true if this is a convert constant expression
bool isCast() const;
/// @brief Return true if this is a compare constant expression
bool isCompare() const;
/// @brief Return true if this is an insertvalue or extractvalue expression,
/// and the getIndices() method may be used.
bool hasIndices() const;
/// @brief Return true if this is a getelementptr expression and all
/// the index operands are compile-time known integers within the
/// corresponding notional static array extents. Note that this is
/// not equivalant to, a subset of, or a superset of the "inbounds"
/// property.
bool isGEPWithNoNotionalOverIndexing() const;
/// Select constant expr
///
static Constant *getSelect(Constant *C, Constant *V1, Constant *V2) {
return getSelectTy(V1->getType(), C, V1, V2);
}
/// get - Return a binary or shift operator constant expression,
/// folding if possible.
///
static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags = 0);
/// @brief Return an ICmp or FCmp comparison operator constant expression.
static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2);
/// get* - Return some common constants without having to
/// specify the full Instruction::OPCODE identifier.
///
static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS);
static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
/// Getelementptr form. std::vector<Value*> is only accepted for convenience:
/// all elements must be Constant's.
///
static Constant *getGetElementPtr(Constant *C,
Constant* const *IdxList, unsigned NumIdx);
static Constant *getGetElementPtr(Constant *C,
Value* const *IdxList, unsigned NumIdx);
/// Create an "inbounds" getelementptr. See the documentation for the
/// "inbounds" flag in LangRef.html for details.
static Constant *getInBoundsGetElementPtr(Constant *C,
Constant* const *IdxList,
unsigned NumIdx);
static Constant *getInBoundsGetElementPtr(Constant *C,
Value* const *IdxList,
unsigned NumIdx);
static Constant *getExtractElement(Constant *Vec, Constant *Idx);
static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask);
static Constant *getExtractValue(Constant *Agg,
const unsigned *IdxList, unsigned NumIdx);
static Constant *getInsertValue(Constant *Agg, Constant *Val,
const unsigned *IdxList, unsigned NumIdx);
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue.
virtual bool isNullValue() const { return false; }
/// getOpcode - Return the opcode at the root of this constant expression
unsigned getOpcode() const { return SubclassData; }
/// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
/// not an ICMP or FCMP constant expression.
unsigned getPredicate() const;
/// getIndices - Assert that this is an insertvalue or exactvalue
/// expression and return the list of indices.
const SmallVector<unsigned, 4> &getIndices() const;
/// getOpcodeName - Return a string representation for an opcode.
const char *getOpcodeName() const;
/// getWithOperandReplaced - Return a constant expression identical to this
/// one, but with the specified operand set to the specified value.
Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
/// getWithOperands - This returns the current constant expression with the
/// operands replaced with the specified values. The specified operands must
/// match count and type with the existing ones.
Constant *getWithOperands(const std::vector<Constant*> &Ops) const {
return getWithOperands(&Ops[0], (unsigned)Ops.size());
}
Constant *getWithOperands(Constant* const *Ops, unsigned NumOps) const;
virtual void destroyConstant();
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ConstantExpr *) { return true; }
static inline bool classof(const Value *V) {
return V->getValueID() == ConstantExprVal;
}
};
template <>
struct OperandTraits<ConstantExpr> : public VariadicOperandTraits<1> {
};
DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantExpr, Constant)
//===----------------------------------------------------------------------===//
/// UndefValue - 'undef' values are things that do not have specified contents.
/// These are used for a variety of purposes, including global variable
/// initializers and operands to instructions. 'undef' values can occur with
/// any type.
///
class UndefValue : public Constant {
friend struct ConstantCreator<UndefValue, Type, char>;
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
UndefValue(const UndefValue &); // DO NOT IMPLEMENT
protected:
explicit UndefValue(const Type *T) : Constant(T, UndefValueVal, 0, 0) {}
protected:
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
public:
/// get() - Static factory methods - Return an 'undef' object of the specified
/// type.
///
static UndefValue *get(const Type *T);
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue.
virtual bool isNullValue() const { return false; }
virtual void destroyConstant();
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const UndefValue *) { return true; }
static bool classof(const Value *V) {
return V->getValueID() == UndefValueVal;
}
};
} // End llvm namespace
#endif