llvm-6502/lib/CodeGen/RegAllocFast.cpp

1167 lines
43 KiB
C++
Raw Normal View History

//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/BasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumCopies, "Number of copies coalesced");
static RegisterRegAlloc
fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
namespace {
class RAFast : public MachineFunctionPass {
public:
static char ID;
RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
isBulkSpilling(false) {}
private:
const TargetMachine *TM;
MachineFunction *MF;
MachineRegisterInfo *MRI;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
RegisterClassInfo RegClassInfo;
// Basic block currently being allocated.
MachineBasicBlock *MBB;
// StackSlotForVirtReg - Maps virtual regs to the frame index where these
// values are spilled.
IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
// Everything we know about a live virtual register.
struct LiveReg {
MachineInstr *LastUse; // Last instr to use reg.
unsigned VirtReg; // Virtual register number.
unsigned PhysReg; // Currently held here.
unsigned short LastOpNum; // OpNum on LastUse.
bool Dirty; // Register needs spill.
explicit LiveReg(unsigned v)
: LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {}
unsigned getSparseSetIndex() const {
return TargetRegisterInfo::virtReg2Index(VirtReg);
}
};
typedef SparseSet<LiveReg> LiveRegMap;
// LiveVirtRegs - This map contains entries for each virtual register
// that is currently available in a physical register.
LiveRegMap LiveVirtRegs;
DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
// RegState - Track the state of a physical register.
enum RegState {
// A disabled register is not available for allocation, but an alias may
// be in use. A register can only be moved out of the disabled state if
// all aliases are disabled.
regDisabled,
// A free register is not currently in use and can be allocated
// immediately without checking aliases.
regFree,
// A reserved register has been assigned explicitly (e.g., setting up a
// call parameter), and it remains reserved until it is used.
regReserved
// A register state may also be a virtual register number, indication that
// the physical register is currently allocated to a virtual register. In
// that case, LiveVirtRegs contains the inverse mapping.
};
// PhysRegState - One of the RegState enums, or a virtreg.
std::vector<unsigned> PhysRegState;
typedef SparseSet<unsigned> UsedInInstrSet;
// UsedInInstr - Set of physregs that are used in the current instruction,
// and so cannot be allocated.
UsedInInstrSet UsedInInstr;
// SkippedInstrs - Descriptors of instructions whose clobber list was
// ignored because all registers were spilled. It is still necessary to
// mark all the clobbered registers as used by the function.
SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
// isBulkSpilling - This flag is set when LiveRegMap will be cleared
// completely after spilling all live registers. LiveRegMap entries should
// not be erased.
bool isBulkSpilling;
enum {
spillClean = 1,
spillDirty = 100,
spillImpossible = ~0u
};
public:
virtual const char *getPassName() const {
return "Fast Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
bool runOnMachineFunction(MachineFunction &Fn);
void AllocateBasicBlock();
void handleThroughOperands(MachineInstr *MI,
SmallVectorImpl<unsigned> &VirtDead);
int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
bool isLastUseOfLocalReg(MachineOperand&);
void addKillFlag(const LiveReg&);
void killVirtReg(LiveRegMap::iterator);
void killVirtReg(unsigned VirtReg);
void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
void usePhysReg(MachineOperand&);
void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
unsigned calcSpillCost(unsigned PhysReg) const;
void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
}
LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
}
LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
unsigned Hint);
LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
unsigned VirtReg, unsigned Hint);
LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
unsigned VirtReg, unsigned Hint);
void spillAll(MachineBasicBlock::iterator MI);
bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
void addRetOperands(MachineBasicBlock *MBB);
};
char RAFast::ID = 0;
}
/// getStackSpaceFor - This allocates space for the specified virtual register
/// to be held on the stack.
int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
// Find the location Reg would belong...
int SS = StackSlotForVirtReg[VirtReg];
if (SS != -1)
return SS; // Already has space allocated?
// Allocate a new stack object for this spill location...
int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
RC->getAlignment());
// Assign the slot.
StackSlotForVirtReg[VirtReg] = FrameIdx;
return FrameIdx;
}
/// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
/// its virtual register, and it is guaranteed to be a block-local register.
///
bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
// If the register has ever been spilled or reloaded, we conservatively assume
// it is a global register used in multiple blocks.
if (StackSlotForVirtReg[MO.getReg()] != -1)
return false;
// Check that the use/def chain has exactly one operand - MO.
MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
if (&I.getOperand() != &MO)
return false;
return ++I == MRI->reg_nodbg_end();
}
/// addKillFlag - Set kill flags on last use of a virtual register.
void RAFast::addKillFlag(const LiveReg &LR) {
if (!LR.LastUse) return;
MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
if (MO.getReg() == LR.PhysReg)
MO.setIsKill();
else
LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
}
}
/// killVirtReg - Mark virtreg as no longer available.
void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
addKillFlag(*LRI);
assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
"Broken RegState mapping");
PhysRegState[LRI->PhysReg] = regFree;
// Erase from LiveVirtRegs unless we're spilling in bulk.
if (!isBulkSpilling)
LiveVirtRegs.erase(LRI);
}
/// killVirtReg - Mark virtreg as no longer available.
void RAFast::killVirtReg(unsigned VirtReg) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"killVirtReg needs a virtual register");
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
if (LRI != LiveVirtRegs.end())
killVirtReg(LRI);
}
/// spillVirtReg - This method spills the value specified by VirtReg into the
/// corresponding stack slot if needed.
void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Spilling a physical register is illegal!");
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
spillVirtReg(MI, LRI);
}
/// spillVirtReg - Do the actual work of spilling.
void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
LiveRegMap::iterator LRI) {
LiveReg &LR = *LRI;
assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
if (LR.Dirty) {
// If this physreg is used by the instruction, we want to kill it on the
// instruction, not on the spill.
bool SpillKill = LR.LastUse != MI;
LR.Dirty = false;
DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
<< " in " << PrintReg(LR.PhysReg, TRI));
const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
int FI = getStackSpaceFor(LRI->VirtReg, RC);
DEBUG(dbgs() << " to stack slot #" << FI << "\n");
TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
++NumStores; // Update statistics
// If this register is used by DBG_VALUE then insert new DBG_VALUE to
// identify spilled location as the place to find corresponding variable's
// value.
SmallVector<MachineInstr *, 4> &LRIDbgValues =
LiveDbgValueMap[LRI->VirtReg];
for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
MachineInstr *DBG = LRIDbgValues[li];
const MDNode *MDPtr =
DBG->getOperand(DBG->getNumOperands()-1).getMetadata();
int64_t Offset = 0;
if (DBG->getOperand(1).isImm())
Offset = DBG->getOperand(1).getImm();
DebugLoc DL;
if (MI == MBB->end()) {
// If MI is at basic block end then use last instruction's location.
MachineBasicBlock::iterator EI = MI;
DL = (--EI)->getDebugLoc();
}
else
DL = MI->getDebugLoc();
if (MachineInstr *NewDV =
TII->emitFrameIndexDebugValue(*MF, FI, Offset, MDPtr, DL)) {
MachineBasicBlock *MBB = DBG->getParent();
MBB->insert(MI, NewDV);
DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
}
}
// Now this register is spilled there is should not be any DBG_VALUE
// pointing to this register because they are all pointing to spilled value
// now.
LRIDbgValues.clear();
if (SpillKill)
LR.LastUse = 0; // Don't kill register again
}
killVirtReg(LRI);
}
/// spillAll - Spill all dirty virtregs without killing them.
void RAFast::spillAll(MachineBasicBlock::iterator MI) {
if (LiveVirtRegs.empty()) return;
isBulkSpilling = true;
// The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
// of spilling here is deterministic, if arbitrary.
for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
i != e; ++i)
spillVirtReg(MI, i);
LiveVirtRegs.clear();
isBulkSpilling = false;
}
/// usePhysReg - Handle the direct use of a physical register.
/// Check that the register is not used by a virtreg.
/// Kill the physreg, marking it free.
/// This may add implicit kills to MO->getParent() and invalidate MO.
void RAFast::usePhysReg(MachineOperand &MO) {
unsigned PhysReg = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
"Bad usePhysReg operand");
switch (PhysRegState[PhysReg]) {
case regDisabled:
break;
case regReserved:
PhysRegState[PhysReg] = regFree;
// Fall through
case regFree:
UsedInInstr.insert(PhysReg);
MO.setIsKill();
return;
default:
// The physreg was allocated to a virtual register. That means the value we
// wanted has been clobbered.
llvm_unreachable("Instruction uses an allocated register");
}
// Maybe a superregister is reserved?
for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
unsigned Alias = *AI;
switch (PhysRegState[Alias]) {
case regDisabled:
break;
case regReserved:
assert(TRI->isSuperRegister(PhysReg, Alias) &&
"Instruction is not using a subregister of a reserved register");
// Leave the superregister in the working set.
PhysRegState[Alias] = regFree;
UsedInInstr.insert(Alias);
MO.getParent()->addRegisterKilled(Alias, TRI, true);
return;
case regFree:
if (TRI->isSuperRegister(PhysReg, Alias)) {
// Leave the superregister in the working set.
UsedInInstr.insert(Alias);
MO.getParent()->addRegisterKilled(Alias, TRI, true);
return;
}
// Some other alias was in the working set - clear it.
PhysRegState[Alias] = regDisabled;
break;
default:
llvm_unreachable("Instruction uses an alias of an allocated register");
}
}
// All aliases are disabled, bring register into working set.
PhysRegState[PhysReg] = regFree;
UsedInInstr.insert(PhysReg);
MO.setIsKill();
}
/// definePhysReg - Mark PhysReg as reserved or free after spilling any
/// virtregs. This is very similar to defineVirtReg except the physreg is
/// reserved instead of allocated.
void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
RegState NewState) {
UsedInInstr.insert(PhysReg);
switch (unsigned VirtReg = PhysRegState[PhysReg]) {
case regDisabled:
break;
default:
spillVirtReg(MI, VirtReg);
// Fall through.
case regFree:
case regReserved:
PhysRegState[PhysReg] = NewState;
return;
}
// This is a disabled register, disable all aliases.
PhysRegState[PhysReg] = NewState;
for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
unsigned Alias = *AI;
switch (unsigned VirtReg = PhysRegState[Alias]) {
case regDisabled:
break;
default:
spillVirtReg(MI, VirtReg);
// Fall through.
case regFree:
case regReserved:
PhysRegState[Alias] = regDisabled;
if (TRI->isSuperRegister(PhysReg, Alias))
return;
break;
}
}
}
// calcSpillCost - Return the cost of spilling clearing out PhysReg and
// aliases so it is free for allocation.
// Returns 0 when PhysReg is free or disabled with all aliases disabled - it
// can be allocated directly.
// Returns spillImpossible when PhysReg or an alias can't be spilled.
unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
if (UsedInInstr.count(PhysReg)) {
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
return spillImpossible;
}
switch (unsigned VirtReg = PhysRegState[PhysReg]) {
case regDisabled:
break;
case regFree:
return 0;
case regReserved:
DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
<< PrintReg(PhysReg, TRI) << " is reserved already.\n");
return spillImpossible;
default: {
LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
return I->Dirty ? spillDirty : spillClean;
}
}
// This is a disabled register, add up cost of aliases.
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
unsigned Cost = 0;
for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
unsigned Alias = *AI;
if (UsedInInstr.count(Alias))
return spillImpossible;
switch (unsigned VirtReg = PhysRegState[Alias]) {
case regDisabled:
break;
case regFree:
++Cost;
break;
case regReserved:
return spillImpossible;
default: {
LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
Cost += I->Dirty ? spillDirty : spillClean;
break;
}
}
}
return Cost;
}
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
<< PrintReg(PhysReg, TRI) << "\n");
PhysRegState[PhysReg] = LR.VirtReg;
assert(!LR.PhysReg && "Already assigned a physreg");
LR.PhysReg = PhysReg;
}
RAFast::LiveRegMap::iterator
RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
assignVirtToPhysReg(*LRI, PhysReg);
return LRI;
}
/// allocVirtReg - Allocate a physical register for VirtReg.
RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
LiveRegMap::iterator LRI,
unsigned Hint) {
const unsigned VirtReg = LRI->VirtReg;
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Can only allocate virtual registers");
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
// Ignore invalid hints.
if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
!RC->contains(Hint) || !MRI->isAllocatable(Hint)))
Hint = 0;
// Take hint when possible.
if (Hint) {
// Ignore the hint if we would have to spill a dirty register.
unsigned Cost = calcSpillCost(Hint);
if (Cost < spillDirty) {
if (Cost)
definePhysReg(MI, Hint, regFree);
// definePhysReg may kill virtual registers and modify LiveVirtRegs.
// That invalidates LRI, so run a new lookup for VirtReg.
return assignVirtToPhysReg(VirtReg, Hint);
}
}
ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);
// First try to find a completely free register.
for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
unsigned PhysReg = *I;
if (PhysRegState[PhysReg] == regFree && !UsedInInstr.count(PhysReg)) {
assignVirtToPhysReg(*LRI, PhysReg);
return LRI;
}
}
DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
<< RC->getName() << "\n");
unsigned BestReg = 0, BestCost = spillImpossible;
for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
unsigned Cost = calcSpillCost(*I);
DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
DEBUG(dbgs() << "\tCost: " << Cost << "\n");
DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
// Cost is 0 when all aliases are already disabled.
if (Cost == 0) {
assignVirtToPhysReg(*LRI, *I);
return LRI;
}
if (Cost < BestCost)
BestReg = *I, BestCost = Cost;
}
if (BestReg) {
definePhysReg(MI, BestReg, regFree);
// definePhysReg may kill virtual registers and modify LiveVirtRegs.
// That invalidates LRI, so run a new lookup for VirtReg.
return assignVirtToPhysReg(VirtReg, BestReg);
}
// Nothing we can do. Report an error and keep going with a bad allocation.
MI->emitError("ran out of registers during register allocation");
definePhysReg(MI, *AO.begin(), regFree);
return assignVirtToPhysReg(VirtReg, *AO.begin());
}
/// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
RAFast::LiveRegMap::iterator
RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
unsigned VirtReg, unsigned Hint) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Not a virtual register");
LiveRegMap::iterator LRI;
bool New;
tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
if (New) {
// If there is no hint, peek at the only use of this register.
if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
MRI->hasOneNonDBGUse(VirtReg)) {
const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg);
// It's a copy, use the destination register as a hint.
if (UseMI.isCopyLike())
Hint = UseMI.getOperand(0).getReg();
}
LRI = allocVirtReg(MI, LRI, Hint);
} else if (LRI->LastUse) {
// Redefining a live register - kill at the last use, unless it is this
// instruction defining VirtReg multiple times.
if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
addKillFlag(*LRI);
}
assert(LRI->PhysReg && "Register not assigned");
LRI->LastUse = MI;
LRI->LastOpNum = OpNum;
LRI->Dirty = true;
UsedInInstr.insert(LRI->PhysReg);
return LRI;
}
/// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
RAFast::LiveRegMap::iterator
RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
unsigned VirtReg, unsigned Hint) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Not a virtual register");
LiveRegMap::iterator LRI;
bool New;
tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
MachineOperand &MO = MI->getOperand(OpNum);
if (New) {
LRI = allocVirtReg(MI, LRI, Hint);
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
<< PrintReg(LRI->PhysReg, TRI) << "\n");
TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
++NumLoads;
} else if (LRI->Dirty) {
if (isLastUseOfLocalReg(MO)) {
DEBUG(dbgs() << "Killing last use: " << MO << "\n");
if (MO.isUse())
MO.setIsKill();
else
MO.setIsDead();
} else if (MO.isKill()) {
DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
MO.setIsKill(false);
} else if (MO.isDead()) {
DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
MO.setIsDead(false);
}
} else if (MO.isKill()) {
// We must remove kill flags from uses of reloaded registers because the
// register would be killed immediately, and there might be a second use:
// %foo = OR %x<kill>, %x
// This would cause a second reload of %x into a different register.
DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
MO.setIsKill(false);
} else if (MO.isDead()) {
DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
MO.setIsDead(false);
}
assert(LRI->PhysReg && "Register not assigned");
LRI->LastUse = MI;
LRI->LastOpNum = OpNum;
UsedInInstr.insert(LRI->PhysReg);
return LRI;
}
// setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
// subregs. This may invalidate any operand pointers.
// Return true if the operand kills its register.
bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
MachineOperand &MO = MI->getOperand(OpNum);
bool Dead = MO.isDead();
if (!MO.getSubReg()) {
MO.setReg(PhysReg);
return MO.isKill() || Dead;
}
// Handle subregister index.
MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
MO.setSubReg(0);
// A kill flag implies killing the full register. Add corresponding super
// register kill.
if (MO.isKill()) {
MI->addRegisterKilled(PhysReg, TRI, true);
return true;
}
// A <def,read-undef> of a sub-register requires an implicit def of the full
// register.
if (MO.isDef() && MO.isUndef())
MI->addRegisterDefined(PhysReg, TRI);
return Dead;
}
// Handle special instruction operand like early clobbers and tied ops when
// there are additional physreg defines.
void RAFast::handleThroughOperands(MachineInstr *MI,
SmallVectorImpl<unsigned> &VirtDead) {
DEBUG(dbgs() << "Scanning for through registers:");
SmallSet<unsigned, 8> ThroughRegs;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
(MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
if (ThroughRegs.insert(Reg))
DEBUG(dbgs() << ' ' << PrintReg(Reg));
}
}
// If any physreg defines collide with preallocated through registers,
// we must spill and reallocate.
DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef()) continue;
unsigned Reg = MO.getReg();
if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
UsedInInstr.insert(*AI);
if (ThroughRegs.count(PhysRegState[*AI]))
definePhysReg(MI, *AI, regFree);
}
}
SmallVector<unsigned, 8> PartialDefs;
DEBUG(dbgs() << "Allocating tied uses.\n");
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
if (MO.isUse()) {
unsigned DefIdx = 0;
if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
<< DefIdx << ".\n");
LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
unsigned PhysReg = LRI->PhysReg;
setPhysReg(MI, i, PhysReg);
// Note: we don't update the def operand yet. That would cause the normal
// def-scan to attempt spilling.
} else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
// Reload the register, but don't assign to the operand just yet.
// That would confuse the later phys-def processing pass.
LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
PartialDefs.push_back(LRI->PhysReg);
}
}
DEBUG(dbgs() << "Allocating early clobbers.\n");
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
if (!MO.isEarlyClobber())
continue;
// Note: defineVirtReg may invalidate MO.
LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
unsigned PhysReg = LRI->PhysReg;
if (setPhysReg(MI, i, PhysReg))
VirtDead.push_back(Reg);
}
// Restore UsedInInstr to a state usable for allocating normal virtual uses.
UsedInInstr.clear();
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
unsigned Reg = MO.getReg();
if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
<< " as used in instr\n");
UsedInInstr.insert(Reg);
}
// Also mark PartialDefs as used to avoid reallocation.
for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
UsedInInstr.insert(PartialDefs[i]);
}
/// addRetOperand - ensure that a return instruction has an operand for each
/// value live out of the function.
///
/// Things marked both call and return are tail calls; do not do this for them.
/// The tail callee need not take the same registers as input that it produces
/// as output, and there are dependencies for its input registers elsewhere.
///
/// FIXME: This should be done as part of instruction selection, and this helper
/// should be deleted. Until then, we use custom logic here to create the proper
/// operand under all circumstances. We can't use addRegisterKilled because that
/// doesn't make sense for undefined values. We can't simply avoid calling it
/// for undefined values, because we must ensure that the operand always exists.
void RAFast::addRetOperands(MachineBasicBlock *MBB) {
if (MBB->empty() || !MBB->back().isReturn() || MBB->back().isCall())
return;
MachineInstr *MI = &MBB->back();
for (MachineRegisterInfo::liveout_iterator
I = MBB->getParent()->getRegInfo().liveout_begin(),
E = MBB->getParent()->getRegInfo().liveout_end(); I != E; ++I) {
unsigned Reg = *I;
assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
"Cannot have a live-out virtual register.");
bool hasDef = PhysRegState[Reg] == regReserved;
// Check if this register already has an operand.
bool Found = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
unsigned OperReg = MO.getReg();
if (!TargetRegisterInfo::isPhysicalRegister(OperReg))
continue;
if (OperReg == Reg || TRI->isSuperRegister(OperReg, Reg)) {
// If the ret already has an operand for this physreg or a superset,
// don't duplicate it. Set the kill flag if the value is defined.
if (hasDef && !MO.isKill())
MO.setIsKill();
Found = true;
break;
}
}
if (!Found)
MachineInstrBuilder(*MF, MI)
.addReg(Reg, llvm::RegState::Implicit | getKillRegState(hasDef));
}
}
void RAFast::AllocateBasicBlock() {
DEBUG(dbgs() << "\nAllocating " << *MBB);
PhysRegState.assign(TRI->getNumRegs(), regDisabled);
assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
MachineBasicBlock::iterator MII = MBB->begin();
// Add live-in registers as live.
for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
E = MBB->livein_end(); I != E; ++I)
if (MRI->isAllocatable(*I))
definePhysReg(MII, *I, regReserved);
SmallVector<unsigned, 8> VirtDead;
SmallVector<MachineInstr*, 32> Coalesced;
// Otherwise, sequentially allocate each instruction in the MBB.
while (MII != MBB->end()) {
MachineInstr *MI = MII++;
const MCInstrDesc &MCID = MI->getDesc();
DEBUG({
dbgs() << "\n>> " << *MI << "Regs:";
for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
if (PhysRegState[Reg] == regDisabled) continue;
dbgs() << " " << TRI->getName(Reg);
switch(PhysRegState[Reg]) {
case regFree:
break;
case regReserved:
dbgs() << "*";
break;
default: {
dbgs() << '=' << PrintReg(PhysRegState[Reg]);
LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
if (I->Dirty)
dbgs() << "*";
assert(I->PhysReg == Reg && "Bad inverse map");
break;
}
}
}
dbgs() << '\n';
// Check that LiveVirtRegs is the inverse.
for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
e = LiveVirtRegs.end(); i != e; ++i) {
assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
"Bad map key");
assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
"Bad map value");
assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
}
});
// Debug values are not allowed to change codegen in any way.
if (MI->isDebugValue()) {
bool ScanDbgValue = true;
while (ScanDbgValue) {
ScanDbgValue = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
if (LRI != LiveVirtRegs.end())
setPhysReg(MI, i, LRI->PhysReg);
else {
int SS = StackSlotForVirtReg[Reg];
if (SS == -1) {
// We can't allocate a physreg for a DebugValue, sorry!
DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
MO.setReg(0);
}
else {
// Modify DBG_VALUE now that the value is in a spill slot.
int64_t Offset = MI->getOperand(1).getImm();
const MDNode *MDPtr =
MI->getOperand(MI->getNumOperands()-1).getMetadata();
DebugLoc DL = MI->getDebugLoc();
if (MachineInstr *NewDV =
TII->emitFrameIndexDebugValue(*MF, SS, Offset, MDPtr, DL)) {
DEBUG(dbgs() << "Modifying debug info due to spill:" <<
"\t" << *MI);
MachineBasicBlock *MBB = MI->getParent();
MBB->insert(MBB->erase(MI), NewDV);
// Scan NewDV operands from the beginning.
MI = NewDV;
ScanDbgValue = true;
break;
} else {
// We can't allocate a physreg for a DebugValue; sorry!
DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
MO.setReg(0);
}
}
}
LiveDbgValueMap[Reg].push_back(MI);
}
}
// Next instruction.
continue;
}
// If this is a copy, we may be able to coalesce.
unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
if (MI->isCopy()) {
CopyDst = MI->getOperand(0).getReg();
CopySrc = MI->getOperand(1).getReg();
CopyDstSub = MI->getOperand(0).getSubReg();
CopySrcSub = MI->getOperand(1).getSubReg();
}
// Track registers used by instruction.
UsedInInstr.clear();
// First scan.
// Mark physreg uses and early clobbers as used.
// Find the end of the virtreg operands
unsigned VirtOpEnd = 0;
bool hasTiedOps = false;
bool hasEarlyClobbers = false;
bool hasPartialRedefs = false;
bool hasPhysDefs = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
// Make sure MRI knows about registers clobbered by regmasks.
if (MO.isRegMask()) {
MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
continue;
}
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!Reg) continue;
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
VirtOpEnd = i+1;
if (MO.isUse()) {
hasTiedOps = hasTiedOps ||
MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
} else {
if (MO.isEarlyClobber())
hasEarlyClobbers = true;
if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
hasPartialRedefs = true;
}
continue;
}
if (!MRI->isAllocatable(Reg)) continue;
if (MO.isUse()) {
usePhysReg(MO);
} else if (MO.isEarlyClobber()) {
definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
regFree : regReserved);
hasEarlyClobbers = true;
} else
hasPhysDefs = true;
}
// The instruction may have virtual register operands that must be allocated
// the same register at use-time and def-time: early clobbers and tied
// operands. If there are also physical defs, these registers must avoid
// both physical defs and uses, making them more constrained than normal
// operands.
// Similarly, if there are multiple defs and tied operands, we must make
// sure the same register is allocated to uses and defs.
// We didn't detect inline asm tied operands above, so just make this extra
// pass for all inline asm.
if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
(hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
handleThroughOperands(MI, VirtDead);
// Don't attempt coalescing when we have funny stuff going on.
CopyDst = 0;
// Pretend we have early clobbers so the use operands get marked below.
// This is not necessary for the common case of a single tied use.
hasEarlyClobbers = true;
}
// Second scan.
// Allocate virtreg uses.
for (unsigned i = 0; i != VirtOpEnd; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
if (MO.isUse()) {
LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
unsigned PhysReg = LRI->PhysReg;
CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
if (setPhysReg(MI, i, PhysReg))
killVirtReg(LRI);
}
}
for (UsedInInstrSet::iterator
I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
MRI->setPhysRegUsed(*I);
// Track registers defined by instruction - early clobbers and tied uses at
// this point.
UsedInInstr.clear();
if (hasEarlyClobbers) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
// Look for physreg defs and tied uses.
if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
UsedInInstr.insert(*AI);
}
}
unsigned DefOpEnd = MI->getNumOperands();
if (MI->isCall()) {
// Spill all virtregs before a call. This serves two purposes: 1. If an
// exception is thrown, the landing pad is going to expect to find
// registers in their spill slots, and 2. we don't have to wade through
// all the <imp-def> operands on the call instruction.
DefOpEnd = VirtOpEnd;
DEBUG(dbgs() << " Spilling remaining registers before call.\n");
spillAll(MI);
// The imp-defs are skipped below, but we still need to mark those
// registers as used by the function.
SkippedInstrs.insert(&MCID);
}
// Third scan.
// Allocate defs and collect dead defs.
for (unsigned i = 0; i != DefOpEnd; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (!MRI->isAllocatable(Reg)) continue;
definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
regFree : regReserved);
continue;
}
LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
unsigned PhysReg = LRI->PhysReg;
if (setPhysReg(MI, i, PhysReg)) {
VirtDead.push_back(Reg);
CopyDst = 0; // cancel coalescing;
} else
CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
}
// Kill dead defs after the scan to ensure that multiple defs of the same
// register are allocated identically. We didn't need to do this for uses
// because we are crerating our own kill flags, and they are always at the
// last use.
for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
killVirtReg(VirtDead[i]);
VirtDead.clear();
for (UsedInInstrSet::iterator
I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
MRI->setPhysRegUsed(*I);
if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
DEBUG(dbgs() << "-- coalescing: " << *MI);
Coalesced.push_back(MI);
} else {
DEBUG(dbgs() << "<< " << *MI);
}
}
// Spill all physical registers holding virtual registers now.
DEBUG(dbgs() << "Spilling live registers at end of block.\n");
spillAll(MBB->getFirstTerminator());
// Erase all the coalesced copies. We are delaying it until now because
// LiveVirtRegs might refer to the instrs.
for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
MBB->erase(Coalesced[i]);
NumCopies += Coalesced.size();
// addRetOperands must run after we've seen all defs in this block.
addRetOperands(MBB);
DEBUG(MBB->dump());
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
<< "********** Function: " << Fn.getName() << '\n');
MF = &Fn;
MRI = &MF->getRegInfo();
TM = &Fn.getTarget();
TRI = TM->getRegisterInfo();
TII = TM->getInstrInfo();
MRI->freezeReservedRegs(Fn);
RegClassInfo.runOnMachineFunction(Fn);
UsedInInstr.clear();
UsedInInstr.setUniverse(TRI->getNumRegs());
assert(!MRI->isSSA() && "regalloc requires leaving SSA");
// initialize the virtual->physical register map to have a 'null'
// mapping for all virtual registers
StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
MBBi != MBBe; ++MBBi) {
MBB = &*MBBi;
AllocateBasicBlock();
}
// Add the clobber lists for all the instructions we skipped earlier.
for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
if (const uint16_t *Defs = (*I)->getImplicitDefs())
while (*Defs)
MRI->setPhysRegUsed(*Defs++);
// All machine operands and other references to virtual registers have been
// replaced. Remove the virtual registers.
MRI->clearVirtRegs();
SkippedInstrs.clear();
StackSlotForVirtReg.clear();
LiveDbgValueMap.clear();
return true;
}
FunctionPass *llvm::createFastRegisterAllocator() {
return new RAFast();
}