no arguments instead of having to come up with a unique name.
This also makes the code less fragile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98364 91177308-0d34-0410-b5e6-96231b3b80d8
LSDA into the TEXT section. We need to generate non-lazy pointers to it on
Mach-O. However, the object the NLP points to may be local to the translation
unit. If so, then the NLP needs to have the value of that object specified
instead of "0", which the linker interprets as "external".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98325 91177308-0d34-0410-b5e6-96231b3b80d8
where we used ot create an MCSymbol for ".". Now emit an assembler
temporary label and reference it instead of "." textually.
rdar://7739457
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98292 91177308-0d34-0410-b5e6-96231b3b80d8
an MCExpr and not an MCSymbol. Change it to take an MCStreamer,
which is currently unused.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98278 91177308-0d34-0410-b5e6-96231b3b80d8
for the NLP because the object it's pointing to may be internal to the file.
This seems counter-intuitive, but bear with me. When we place the LSDA into the
TEXT section, the type info pointers need to be indirect and pc-rel. We
accomplish this by using NLPs. However, sometimes the types are local to the
file. GCC gets around this by not using a NLP in this case, but a "regular"
indirection like this:
GCC_except_tbl:
.long Lfoo-.
__ZTIA: @ This is local
...
Lfoo:
.long __ZTIA
LLVM prefers NLPs on Darwin. In fact, it's more optimal for load performance to
use them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98218 91177308-0d34-0410-b5e6-96231b3b80d8
which doesn't support .quad correctly because it is
"really really old". PR6528.
Yet another reason the mc assembler should take over ;-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98205 91177308-0d34-0410-b5e6-96231b3b80d8
indicates that an MCSymbol is external or not. (It's true if it's external.)
This will be used to specify the correct information to add to non-lazy
pointers. That will be explained further when this bit is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98199 91177308-0d34-0410-b5e6-96231b3b80d8
operands into their own PrintMethod, in order not to pollute the printOperand()
impl with disassembly only Imm modifiers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98172 91177308-0d34-0410-b5e6-96231b3b80d8
directly to the maccu / maccs instructions. We handle this in
ExpandADDSUB since after type legalisation it is messy to
recognise these operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98150 91177308-0d34-0410-b5e6-96231b3b80d8
is preparatory to having PEI's scavenged frame index value reuse logic
properly distinguish types of frame values (e.g., whether the value is
stack-pointer relative or frame-pointer relative).
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98086 91177308-0d34-0410-b5e6-96231b3b80d8
Make it so. (This patch is in LowerCall_Darwin, which seems
to be used by SVR4 code as well; since that doesn't belong here,
I haven't worried about this case.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98077 91177308-0d34-0410-b5e6-96231b3b80d8
register is involved for thumb1. Work around this for the moment by only
re-using SP-relative offsets. This is temporary 'til the code can distinguish
multiple base registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98071 91177308-0d34-0410-b5e6-96231b3b80d8
Place the LSDA into the TEXT section for ARM platforms. This involves making the
encoding indirect, pcrel, and sdata4 instead of an absolute pointer. The
references to the type infos are then non-lazy pointers. Revision 98019 changed
the encoding of non-lazy pointers to add the symbol to the non-lazy pointer
definition if it's a local symbol (otherwise, it's external and set to '0' so
that the loader can adjust it to the real value). This paved the way for this
change to work on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98068 91177308-0d34-0410-b5e6-96231b3b80d8
immediate instructions cannot set the condition codes, so they do not have
the extra cc_out operand. We hit an assertion during tail duplication
because the instruction being duplicated had more operands that expected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98001 91177308-0d34-0410-b5e6-96231b3b80d8
example, this:
(set DPR:$dst, (fsub (fneg (fmul DPR:$a, DPR:$b)), DPR:$dstin))
is ambiguous because DPR contains both f64 and v2f32. tblgen
currently accidentally picks f64 because it's first in the
regclass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97955 91177308-0d34-0410-b5e6-96231b3b80d8
This is a first step towards eliminating unncessary constructor checks in light weight DIDescriptor wrappers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97947 91177308-0d34-0410-b5e6-96231b3b80d8
We cannot use a normal call here since it has extra unmodelled side
effects (it changes stack pointer). This should fix PR5292.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97884 91177308-0d34-0410-b5e6-96231b3b80d8
registers may be restored via a pop instruction, not just a tRestore.
This fixes nightly test 471.omnetep for Thumb1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97867 91177308-0d34-0410-b5e6-96231b3b80d8
The MicroBlaze backend was generating stack layouts that did not
conform correctly to the ABI. This update generates stack layouts
which are closer to what GCC does.
Variable arguments support was added as well but the stack layout
for varargs has not been finalized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97807 91177308-0d34-0410-b5e6-96231b3b80d8
This code:
float floatingPointComparison(float x, float y) {
double product = (double)x * y;
if (product == 0.0)
return product;
return product - 1.0;
}
produces this:
_floatingPointComparison:
0000000000000000 cvtss2sd %xmm1,%xmm1
0000000000000004 cvtss2sd %xmm0,%xmm0
0000000000000008 mulsd %xmm1,%xmm0
000000000000000c pxor %xmm1,%xmm1
0000000000000010 ucomisd %xmm1,%xmm0
0000000000000014 jne 0x00000004
0000000000000016 jp 0x00000002
0000000000000018 jmp 0x00000008
000000000000001a addsd 0x00000006(%rip),%xmm0
0000000000000022 cvtsd2ss %xmm0,%xmm0
0000000000000026 ret
The "jne/jp/jmp" sequence can be reduced to this instead:
_floatingPointComparison:
0000000000000000 cvtss2sd %xmm1,%xmm1
0000000000000004 cvtss2sd %xmm0,%xmm0
0000000000000008 mulsd %xmm1,%xmm0
000000000000000c pxor %xmm1,%xmm1
0000000000000010 ucomisd %xmm1,%xmm0
0000000000000014 jp 0x00000002
0000000000000016 je 0x00000008
0000000000000018 addsd 0x00000006(%rip),%xmm0
0000000000000020 cvtsd2ss %xmm0,%xmm0
0000000000000024 ret
for a savings of 2 bytes.
This xform can happen when we recognize that jne and jp jump to the same "true"
MBB, the unconditional jump would jump to the "false" MBB, and the "true" branch
is the fall-through MBB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97766 91177308-0d34-0410-b5e6-96231b3b80d8
an undef value. This is only going to come up for bugpoint-reduced tests --
correct programs will not access memory at undefined addresses -- so it's not
worth the effort of doing anything more aggressive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97745 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions technically define AL,AH, but a trick in X86ISelDAGToDAG
reads AX in order to avoid reading AH with a REX instruction.
Fix PR6489.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97742 91177308-0d34-0410-b5e6-96231b3b80d8
register if it isn't possible to match the indexes *and* the base.
This fixes some fast isel rejects of load instructions on oggenc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97739 91177308-0d34-0410-b5e6-96231b3b80d8
Instruction (PLI) for disassembly only.
According to A8.6.120 PLI (immediate, literal), for example, different
instructions are generated for "pli [pc, #0]" and "pli [pc, #-0"]. The
disassembler solves it by mapping -0 (negative zero) to -1, -1 to -2, ..., etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97731 91177308-0d34-0410-b5e6-96231b3b80d8
'dsload' pattern. tblgen doesn't check patterns to see if they're
textually identical. This allows better factoring.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97630 91177308-0d34-0410-b5e6-96231b3b80d8
that they are not destination type specific. This allows
tblgen to factor them and the type check is redundant with
what the isel does anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97629 91177308-0d34-0410-b5e6-96231b3b80d8
- Eliminate TargetInstrInfo::isIdentical and replace it with produceSameValue. In the default case, produceSameValue just checks whether two machine instructions are identical (except for virtual register defs). But targets may override it to check for unusual cases (e.g. ARM pic loads from constant pools).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97628 91177308-0d34-0410-b5e6-96231b3b80d8
now that isel handles chains more aggressively. This also
allows us to make isLegalToFold non-virtual.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97597 91177308-0d34-0410-b5e6-96231b3b80d8
CopyToReg/CopyFromReg/INLINEASM. These are annoying because
they have the same opcode before an after isel. Fix this by
setting their NodeID to -1 to indicate that they are selected,
just like what automatically happens when selecting things that
end up being machine nodes.
With that done, give IsLegalToFold a new flag that causes it to
ignore chains. This lets the HandleMergeInputChains routine be
the one place that validates chains after a match is successful,
enabling the new hotness in chain processing. This smarter
chain processing eliminates the need for "PreprocessRMW" in the
X86 and MSP430 backends and enables MSP to start matching it's
multiple mem operand instructions more aggressively.
I currently #if out the dead code in the X86 backend and MSP
backend, I'll remove it for real in a follow-on patch.
The testcase changes are:
test/CodeGen/X86/sse3.ll: we generate better code
test/CodeGen/X86/store_op_load_fold2.ll: PreprocessRMW was
miscompiling this before, we now generate correct code
Convert it to filecheck while I'm at it.
test/CodeGen/MSP430/Inst16mm.ll: Add a testcase for mem/mem
folding to make anton happy. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97596 91177308-0d34-0410-b5e6-96231b3b80d8
the opc string passed in, since it's a given from the class inheritance of T2sI.
The fixed the extra 's' in adcss & sbcss when disassembly printing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97582 91177308-0d34-0410-b5e6-96231b3b80d8
DoInstructionSelection. Inline "SelectRoot" into it from DAGISelHeader.
Sink some other stuff out of DAGISelHeader into SDISel.
Eliminate the various 'Indent' stuff from various targets, which dates
to when isel was recursive.
17 files changed, 114 insertions(+), 430 deletions(-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97555 91177308-0d34-0410-b5e6-96231b3b80d8
Extracting the low element of a vector is now done with EXTRACT_SUBREG,
and the zero-extension performed by load movss is now modeled with
SUBREG_TO_REG, and so on.
Register-to-register movss and movsd are no longer considered copies;
they are two-address instructions which insert a scalar into a vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97354 91177308-0d34-0410-b5e6-96231b3b80d8
but codegen'd differently. This really wanted to use some
sort of subreg to get the low 4 bytes of the G8RC register
or something. However, it's invalid and nothing is testing
it, so I'm just zapping the bogosity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97345 91177308-0d34-0410-b5e6-96231b3b80d8
o Parallel addition and subtraction, signed/unsigned
o Miscellaneous operations: QADD, QDADD, QSUB, QDSUB
o Unsigned sum of absolute differences [and accumulate]: USAD8, USADA8
o Signed/Unsigned saturate: SSAT, SSAT16, USAT, USAT16
o Signed multiply accumulate long (halfwords): SMLAL<x><y>
o Signed multiply accumulate/subtract [long] (dual): SMLAD[x], SMLALD[X], SMLSD[X], SMLSLD[X]
o Signed dual multiply add/subtract [long]: SMUAD[X], SMUSD[X]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97276 91177308-0d34-0410-b5e6-96231b3b80d8
This is possible because F8RC is a subclass of F4RC. We keep FMRSD around so
fextend has a pattern.
Also allow folding of memory operands on FMRSD.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97275 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC floating point registers can represent both f32 and f64 via the
two register classes F4RC and F8RC. F8RC is considered a subclass of F4RC to
allow cross-class coalescing. This coalescing only affects whether registers
are spilled as f32 or f64.
Spill slots must be accessed with load/store instructions corresponding to the
class of the spilled register. PPCInstrInfo::foldMemoryOperandImpl was looking
at the instruction opcode which is wrong.
X86 has similar floating point register classes, but doesn't try to fold
memory operands, so there is no problem there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97262 91177308-0d34-0410-b5e6-96231b3b80d8
Previously LoopStrengthReduce would sometimes be unable to find
a legal formula, causing an assertion failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97226 91177308-0d34-0410-b5e6-96231b3b80d8
object construction. There is no provision to change them when the
code for a function generated.
So we have to change these names while printing assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97213 91177308-0d34-0410-b5e6-96231b3b80d8
terms of store and load, which means bitcasting between scalar
integer and vector has endian-specific results, which undermines
this whole approach.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97137 91177308-0d34-0410-b5e6-96231b3b80d8
(511*16) bytes register displacement (D-form).
NOTE: This is a potential headache, given the SPU's local core limitations,
allowing the software developer to commit stack overrun suicide unknowingly.
Also, large SPU stack frames will cause code size explosion. But, one presumes
that the software developer knows what they're doing...
Contributed by Kalle.Raiskila@nokia.com, edited slightly before commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97091 91177308-0d34-0410-b5e6-96231b3b80d8
- Function uses all scratch registers AND
- Function does not use any callee saved registers AND
- Stack size is too big to address with immediate offsets.
In this case a register must be scavenged to calculate the address of a stack
object, and the scavenger needs a spare register or emergency spill slot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97071 91177308-0d34-0410-b5e6-96231b3b80d8
greater-than-or-equal SELECT_CCs to NEON vmin/vmax instructions. This is
only allowed when UnsafeFPMath is set or when at least one of the operands
is known to be nonzero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97065 91177308-0d34-0410-b5e6-96231b3b80d8
the number of value bits, not the number of bits of allocation for in-memory
storage.
Make getTypeStoreSize and getTypeAllocSize work consistently for arrays and
vectors.
Fix several places in CodeGen which compute offsets into in-memory vectors
to use TargetData information.
This fixes PR1784.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97064 91177308-0d34-0410-b5e6-96231b3b80d8
Adding the function "lookupGCCName" to the MBlazeIntrinsicInfo
class to support the Clang MicroBlaze target.
Additionally, minor fixes which remove some unused PIC code
(PIC is not supported yet in the MicroBlaze backend) and
removed some unused variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97054 91177308-0d34-0410-b5e6-96231b3b80d8
necessary to swap the operands to handle NaN and negative zero properly.
Also, reintroduce logic for checking for NaN conditions when forming
SSE min and max instructions, fixed to take into consideration NaNs and
negative zeros. This allows forming min and max instructions in more
cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97025 91177308-0d34-0410-b5e6-96231b3b80d8
memory from three or four registers and VST2 (multiple two-element structures)
which stores to memory from two double-spaced registers.
A8.6.391 & A8.6.393
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97018 91177308-0d34-0410-b5e6-96231b3b80d8
three or four registers and VLD2 (multiple two-element structures) which loads
memory into two double-spaced registers.
A8.6.307 & A8.6.310
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96980 91177308-0d34-0410-b5e6-96231b3b80d8