non-zero.
- Teach X86 cmov optimization to eliminate the cmov from ctlz, cttz extension
when the source of X86ISD::BSR / X86ISD::BSF is proven to be non-zero.
rdar://9490949
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131948 91177308-0d34-0410-b5e6-96231b3b80d8
I'm backing this out for the second time. It was supposed to be fixed by r128164, but the mingw self-host must be defeating the fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128181 91177308-0d34-0410-b5e6-96231b3b80d8
to have single return block (at least getting there) for optimizations. This
is general goodness but it would prevent some tailcall optimizations.
One specific case is code like this:
int f1(void);
int f2(void);
int f3(void);
int f4(void);
int f5(void);
int f6(void);
int foo(int x) {
switch(x) {
case 1: return f1();
case 2: return f2();
case 3: return f3();
case 4: return f4();
case 5: return f5();
case 6: return f6();
}
}
=>
LBB0_2: ## %sw.bb
callq _f1
popq %rbp
ret
LBB0_3: ## %sw.bb1
callq _f2
popq %rbp
ret
LBB0_4: ## %sw.bb3
callq _f3
popq %rbp
ret
This patch teaches codegenprep to duplicate returns when the return value
is a phi and where the phi operands are produced by tail calls followed by
an unconditional branch:
sw.bb7: ; preds = %entry
%call8 = tail call i32 @f5() nounwind
br label %return
sw.bb9: ; preds = %entry
%call10 = tail call i32 @f6() nounwind
br label %return
return:
%retval.0 = phi i32 [ %call10, %sw.bb9 ], [ %call8, %sw.bb7 ], ... [ 0, %entry ]
ret i32 %retval.0
This allows codegen to generate better code like this:
LBB0_2: ## %sw.bb
jmp _f1 ## TAILCALL
LBB0_3: ## %sw.bb1
jmp _f2 ## TAILCALL
LBB0_4: ## %sw.bb3
jmp _f3 ## TAILCALL
rdar://9147433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127953 91177308-0d34-0410-b5e6-96231b3b80d8
not have native support for this operation (such as X86).
The legalized code uses two vector INT_TO_FP operations and is faster
than scalarizing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127951 91177308-0d34-0410-b5e6-96231b3b80d8
comparisons on x86. Essentially, the way this works is that SUB+SBB sets
the relevant flags the same way a double-width CMP would.
This is a substantial improvement over the generic lowering in LLVM. The output
is also shorter than the gcc-generated output; I haven't done any detailed
benchmarking, though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127852 91177308-0d34-0410-b5e6-96231b3b80d8
rather than an int. Thankfully, this only causes LLVM to miss optimizations, not
generate incorrect code.
This just fixes the zext at the return. We still insert an i32 ZextAssert when
reading a function's arguments, but it is followed by a truncate and another i8
ZextAssert so it is not optimized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127766 91177308-0d34-0410-b5e6-96231b3b80d8
corresponding testcases back to the previous versions.
Fixes some performance regressions only seen on 32-bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127441 91177308-0d34-0410-b5e6-96231b3b80d8
testcases accordingly. Some are currently xfailed and will be filed
as bugs to be fixed or understood.
Performance results:
roughly neutral on SPEC
some micro benchmarks in the llvm suite are up between 100 and 150%, only
a pair of regressions that are due to be investigated
john-the-ripper saw:
10% improvement in traditional DES
8% improvement in BSDI DES
59% improvement in FreeBSD MD5
67% improvement in OpenBSD Blowfish
14% improvement in LM DES
Small compile time impact.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127208 91177308-0d34-0410-b5e6-96231b3b80d8
regs. This is the only change in this checkin that may affects the
default scheduler. With better register tracking and heuristics, it
doesn't make sense to artificially lower the register limit so much.
Added -sched-high-latency-cycles and X86InstrInfo::isHighLatencyDef to
give the scheduler a way to account for div and sqrt on targets that
don't have an itinerary. It is currently defaults to 10 (the actual
number doesn't matter much), but only takes effect on non-default
schedulers: list-hybrid and list-ilp.
Added several heuristics that can be individually disabled for the
non-default sched=list-ilp mode. This helps us determine how much
better we can do on a given benchmark than the default
scheduler. Certain compute intensive loops run much faster in this
mode with the right set of heuristics, and it doesn't seem to have
much negative impact elsewhere. Not all of the heuristics are needed,
but we still need to experiment to decide which should be disabled by
default for sched=list-ilp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127067 91177308-0d34-0410-b5e6-96231b3b80d8
missing patterns for them.
Add a SIMD test subdirectory to hold tests for SIMD instruction
selection correctness and quality.
'
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126845 91177308-0d34-0410-b5e6-96231b3b80d8
and 256-bit forms. Because the number of elements in a vector
does not determine the vector type (4 elements could be v4f32 or
v4f64), pass the full type of the vector to decode routines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126664 91177308-0d34-0410-b5e6-96231b3b80d8
In other words, do not keep track of argument's location. The debugger (gdb) is not prepared to see line table entries for arguments. For the debugger, "second" line table entry marks beginning of function body.
This requires some coordination with debugger to get this working.
- The debugger needs to be aware of prolog_end attribute attached with line table entries.
- The compiler needs to accurately mark prolog_end in line table entries (at -O0 and at -O1+)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126155 91177308-0d34-0410-b5e6-96231b3b80d8
since one needs to be a register operand. Just use movss instead of forcing
an operand into a register.
Fixes PR9239
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126072 91177308-0d34-0410-b5e6-96231b3b80d8
(LLVMX86Utils.a) to break cyclic library dependencies between
LLVMX86CodeGen.a and LLVMX86AsmParser.a. Previously this code was in
a header file and marked static but AVX requires some additional
functionality here that won't be used by all clients. Since including
unused static functions causes a gcc compiler warning, keeping it as a
header would break builds that use -Werror. Putting this in its own
library solves both problems at once.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125765 91177308-0d34-0410-b5e6-96231b3b80d8
have their low bits set to zero. This allows us to optimize
out explicit stack alignment code like in stack-align.ll:test4 when
it is redundant.
Doing this causes the code generator to start turning FI+cst into
FI|cst all over the place, which is general goodness (that is the
canonical form) except that various pieces of the code generator
don't handle OR aggressively. Fix this by introducing a new
SelectionDAG::isBaseWithConstantOffset predicate, and using it
in places that are looking for ADD(X,CST). The ARM backend in
particular was missing a lot of addressing mode folding opportunities
around OR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125470 91177308-0d34-0410-b5e6-96231b3b80d8