missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169224 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
r165941: Resubmit the changes to llvm core to update the functions to
support different pointer sizes on a per address space basis.
Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.
However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.
In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.
In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.
This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166168 91177308-0d34-0410-b5e6-96231b3b80d8
- BlockAddress has no support of BA + offset form and there is no way to
propagate that offset into machine operand;
- Add BA + offset support and a new interface 'getTargetBlockAddress' to
simplify target block address forming;
- All targets are modified to use new interface and X86 backend is enhanced to
support BA + offset addressing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163743 91177308-0d34-0410-b5e6-96231b3b80d8
Call instructions are no longer required to be variadic, and
variable_ops should only be used for instructions that encode a variable
number of arguments, like the ARM stm/ldm instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160189 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary step toward having TargetPassConfig be able to
start and stop the compilation at specified passes for unit testing
and debugging. No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159567 91177308-0d34-0410-b5e6-96231b3b80d8
There are some that I didn't remove this round because they looked like
obvious stubs. There are dead variables in gtest too, they should be
fixed upstream.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158090 91177308-0d34-0410-b5e6-96231b3b80d8
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157479 91177308-0d34-0410-b5e6-96231b3b80d8
The getPointerRegClass() hook can return register classes that depend on
the calling convention of the current function (ptr_rc_tailcall).
So far, we have been able to infer the calling convention from the
subtarget alone, but as we add support for multiple calling conventions
per target, that no longer works.
Patch by Yiannis Tsiouris!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156328 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetPassManager's default constructor wants to initialize the PassManager
to 'null'. But it's illegal to bind a null reference to a null l-value. Make the
ivar a pointer instead.
PR12468
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155902 91177308-0d34-0410-b5e6-96231b3b80d8
the processor keeps a return addresses stack (RAS) which stores the address
and the instruction execution state of the instruction after a function-call
type branch instruction.
Calling a "noreturn" function with normal call instructions (e.g. bl) can
corrupt RAS and causes 100% return misprediction so LLVM should use a
unconditional branch instead. i.e.
mov lr, pc
b _foo
The "mov lr, pc" is issued in order to get proper backtrace.
rdar://8979299
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151623 91177308-0d34-0410-b5e6-96231b3b80d8
Passes prior to instructon selection are now split into separate configurable stages.
Header dependencies are simplified.
The bulk of this diff is simply removal of the silly DisableVerify flags.
Sorry for the target header churn. Attempting to stabilize them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149754 91177308-0d34-0410-b5e6-96231b3b80d8
Allows command line overrides to be centralized in LLVMTargetMachine.cpp.
LLVMTargetMachine can intercept common passes and give precedence to command line overrides.
Allows adding "internal" target configuration options without touching TargetOptions.
Encapsulates the PassManager.
Provides a good point to initialize all CodeGen passes so that Pass ID's can be used in APIs.
Allows modifying the target configuration hooks without rebuilding the world.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149672 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to implicit register operands. MC doesn't understand
register liveness and call clobbers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148437 91177308-0d34-0410-b5e6-96231b3b80d8
Use information computed while inferring new register classes to emit
accurate, table-driven implementations of getMatchingSuperRegClass().
Delete the old manual, error-prone implementations in the targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146873 91177308-0d34-0410-b5e6-96231b3b80d8
undefined result. This adds new ISD nodes for the new semantics,
selecting them when the LLVM intrinsic indicates that the undef behavior
is desired. The new nodes expand trivially to the old nodes, so targets
don't actually need to do anything to support these new nodes besides
indicating that they should be expanded. I've done this for all the
operand types that I could figure out for all the targets. Owners of
various targets, please review and let me know if any of these are
incorrect.
Note that the expand behavior is *conservatively correct*, and exactly
matches LLVM's current behavior with these operations. Ideally this
patch will not change behavior in any way. For example the regtest suite
finds the exact same instruction sequences coming out of the code
generator. That's why there are no new tests here -- all of this is
being exercised by the existing test suite.
Thanks to Duncan Sands for reviewing the various bits of this patch and
helping me get the wrinkles ironed out with expanding for each target.
Also thanks to Chris for clarifying through all the discussions that
this is indeed the approach he was looking for. That said, there are
likely still rough spots. Further review much appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146466 91177308-0d34-0410-b5e6-96231b3b80d8
subdirectories to traverse into.
- Originally I wanted to avoid this and just autoscan, but this has one key
flaw in that new subdirectories can not automatically trigger a rerun of the
llvm-build tool. This is particularly a pain when switching back and forth
between trees where one has added a subdirectory, as the dependencies will
tend to be wrong. This will also eliminates FIXME implicitly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146436 91177308-0d34-0410-b5e6-96231b3b80d8