This patch teaches the backend how to combine packed SSE2/AVX2 arithmetic shift
intrinsics.
The rules are:
- Always fold a packed arithmetic shift by zero to its first operand;
- Convert a packed arithmetic shift intrinsic dag node into a ISD::SRA only if
the shift count is known to be smaller than the vector element size.
This patch also teaches to function 'getTargetVShiftByConstNode' how fold
target specific vector shifts by zero.
Added two new tests to verify that the DAGCombiner is able to fold
sequences of SSE2/AVX2 packed arithmetic shift calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208342 91177308-0d34-0410-b5e6-96231b3b80d8
When building on Windows, the default target is Windows. Windows on ARM does
not support ARM mode compilation, resulting in test failures. Simply specify a
triple to ensure that we are testing the correct behaviour.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208340 91177308-0d34-0410-b5e6-96231b3b80d8
The parsing of ADD/SUB shifted immediates needs to be done explicitly so
that better diagnostics can be emitted, as a side effect this also
removes some of the hacks in the current method of handling this operand
type.
Additionally remove manual CMP aliasing to ADD/SUB and use InstAlias
instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208329 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I've noticed a bug in my test generator script that caused 64-bit objects
to be disassembled as if it were using the O32 ABI, giving the wrong register
names. As a result, it generated assembly files that are rejected by GAS when
assembling for the correct ABI. This was caused by the generator setting the
ELF e_flags incorrectly before disassembling the object.
This patch corrects the invalid tests that have already been committed by
replacing the ABI-dependent register names with numeric registers. In addition
to fixing the tests this allows the 32-bit and 64-bit ISA tests to be easily diffed
to produce the invalid-*.s tests which test that instructions defined in later ISA's
are not accepted.
Depends on D3648
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208327 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
These instructions were added in MIPS-I, and MIPS-II but were removed in
MIPS-III. Interestingly, GAS continues to accept them when assembling for
MIPS-III.
For the moment, these instructions will follow GAS and accept them for
MIPS-III and newer but this will be tightened up when the invalid-*.s
tests are added.
Depends on D3647
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3648
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208311 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
A small number of instructions are rejected with the wrong error message.
These have been placed in a separate test for now. There seems to be some
parsing quirk that triggers when these instructions are disabled.
Depends on D3571
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3647
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208305 91177308-0d34-0410-b5e6-96231b3b80d8
Also removed an inaccurate comment that stated that a DenseMap was used as
storage for the ListInit*'s. It's currently using a FoldingSet.
I expect there's a better way to fix this but I haven't found it yet. FoldingSet
is incompatible with the Pool template and I'm not sure if FoldingSet can be
safely replaced with a DenseMap of computed FoldingSetID's to ListInit*'s.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208293 91177308-0d34-0410-b5e6-96231b3b80d8
The old method used by X86TTI to determine partial-unrolling thresholds was
messy (because it worked by testing target features), and also would not
correctly identify the target CPU if certain target features were disabled.
After some discussions on IRC with Chandler et al., it was decided that the
processor scheduling models were the right containers for this information
(because it is often tied to special uop dispatch-buffer sizes).
This does represent a small functionality change:
- For generic x86-64 (which uses the SB model and, thus, will get some
unrolling).
- For AMD cores (because they still currently use the SB scheduling model)
- For Haswell (based on benchmarking by Louis Gerbarg, it was decided to bump
the default threshold to 50; we're working on a test case for this).
Otherwise, nothing has changed for any other targets. The logic, however, has
been moved into BasicTTI, so other targets may now also opt-in to this
functionality simply by setting LoopMicroOpBufferSize in their processor
model definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208289 91177308-0d34-0410-b5e6-96231b3b80d8
This adds FK_SecRel_2 relocation support to ARM. This enables the building of
object files for armv7-windows-msvc which enables CodeView line tables for
debugging as opposed to armv7-windows-itanium which currently uses DWARF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208273 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Vectors built with zeros and elements in the same order as another
(source) vector are optimized to be built using a single insertps
instruction.
Also optimize when we move one element in a vector to a different place
in that vector while zeroing out some of the other elements.
Further optimizations are possible, described in TODO comments.
I will be implementing at least some of them in the near future.
Added some tests for different cases where this optimization triggers.
Reviewers: nadav, delena, craig.topper
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3521
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208271 91177308-0d34-0410-b5e6-96231b3b80d8
The change to ExtractGV.cpp has no functionality change except to avoid
the asserts. Existing testcases already cover this, so I didn't add a
new one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208264 91177308-0d34-0410-b5e6-96231b3b80d8
Visibilities of `hidden` and `protected` are meaningless for symbols
with local linkage.
- Change the assembler to reject non-default visibility on symbols
with local linkage.
- Change the bitcode reader to auto-upgrade `hidden` and `protected`
to `default` when the linkage is local.
- Update LangRef.
<rdar://problem/16141113>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208263 91177308-0d34-0410-b5e6-96231b3b80d8
`ModuleLinker::getLinkageResult()` shouldn't create symbols with local
linkage and non-default visibility -- in fact, symbols with local
linkage shouldn't be merged at all. Assert to that effect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208262 91177308-0d34-0410-b5e6-96231b3b80d8
Since visibility is meaningless for symbols with local linkage, check
local linkage before visibility when setting symbol attributes.
When linkage is `internal` and the visibility is `hidden`, the exposed
attribute is now `LTO_SYMBOL_SCOPE_INTERNAL` instead of
`LTO_SYMBOL_SCOPE_HIDDEN`. Although the bitfield allows *both* to be
specified, the combination is nonsense anyway.
Given changes (in progress) to drop visibility when a symbol has local
linkage, this almost has no functionality change: it's mostly a cleanup
to clarify the logic.
The exception is when something has `appending` linkage. Before this
change, such symbols would be advertised as `LTO_SYMBOL_SCOPE_INTERNAL`;
now, they'll be given `LTO_SYMBOL_SCOPE_COMMON`.
Unfortunately this is really awkward to test. This only changes what we
advertise to linkers (before running LTO), not what the final object
looks like. In theory I could add `DEBUG` output to `llvm-lto` (and
test with "REQUIRES: asserts"), but follow-up commits to disallow
`internal hidden` simplify this anyway.
<rdar://problem/16141113>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208261 91177308-0d34-0410-b5e6-96231b3b80d8
Prior to r208252, the FMA 231 family was marked as isCommutable. However the
memory variants of this family are not commutable. Therefore, we did not
implemented the findCommutedOpIndices for those variants and missed that
the default implementation (more or less: commute indices 1 and 2) was
firing behind our back.
As a result, as demonstrated in the test case before the fix, we were
transforming a = b * c + a into a = a * c + b.
I.e., before r208252 we were generating for this test case:
vmovaps %xmm0, %xmm1
vmoss (%rsi), %xmm0
vfmadd231ss (%rdi), %xmm1, %xmm0
Instead of:
vmoss (%rsi), %xmm1
vfmadd231ss (%rdi), %xmm1, %xmm0
<rdar://problem/16800495>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208260 91177308-0d34-0410-b5e6-96231b3b80d8
relocation entries it applies.
Prior to this patch, RuntimeDyldImpl::resolveExternalSymbols discarded
relocations for external symbols once they had been applied. This causes issues
if the client calls MCJIT::finalizeLoadedModules more than once, and updates the
location of any symbols in between (e.g. by calling MCJIT::mapSectionAddress).
No test case yet: None of our in-tree memory managers support moving sections
around. I'll have to hack up a dummy memory manager before I can write a unit
test.
Fixes <rdar://problem/16764378>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208257 91177308-0d34-0410-b5e6-96231b3b80d8
The loop stream detector (LSD) on modern Intel cores, which optimizes the
execution of small loops, has limits on the number of taken branches in
addition to uop-count limits (modern AMD cores have similar limits).
Unfortunately, at the IR level, estimating the number of branches that will be
taken is difficult. For one thing, it strongly depends on later passes (block
placement, etc.). The original implementation took a conservative approach and
limited the maximal BB DFS depth of the loop. However, fairly-extensive
benchmarking by several of us has revealed that this is the wrong approach. In
fact, there are zero known cases where the branch limit prevents a detrimental
unrolling (but plenty of cases where it does prevent beneficial unrolling).
While we could improve the current branch counting logic by incorporating
branch probabilities, this further complication seems unjustified without a
motivating regression. Instead, unless and until a regression appears, the
branch counting will be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208255 91177308-0d34-0410-b5e6-96231b3b80d8
Given a FMA family (e.g., 213, 231), not all the variants (i.e., register or
memory) are commutable.
E.g., for the 213 family (with the syntax src1, src2, src3):
fmaXXX213 A, B, reg3/mem3 == fmaXXX213 B, A, reg3/mem3
Now consider the 231 family:
fmaXXX231 A, B, reg3 == fmaXXX231 A, reg3, B
But
fmaXXX231 A, B, mem3 != fmaXXX231 A, mem3, B
Indeed, mem3 cannot be the second argument of the memory variant of fmaXXX231.
Working on a reduced test case!
<rdar://problem/16800495>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208252 91177308-0d34-0410-b5e6-96231b3b80d8
OnDiskHashTable::insert() calls the Item constructor via placement new, but
nothing called the destructor. This matters in cases when the Info template
parameter has key_type or data_type typedefs that have a destructor, for
example like IdentifierIndexWriterTrait in clang's GlobalModuleIndex.cpp.
This fixes a 5-year old bug that's been around since the OnDiskHashTable code
was added in r64192. Bug found by LSan!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208243 91177308-0d34-0410-b5e6-96231b3b80d8
When reducing the bitwidth of a comparison against a constant, the
original setcc's result type was used, which was incorrect.
No test since I don't think any other in tree targets change the
bitwidth of the setcc type depending on the bitwidth of the compared
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208236 91177308-0d34-0410-b5e6-96231b3b80d8
To compute the dimensions of the array in a unique way, we split the
delinearization analysis in three steps:
- find parametric terms in all memory access functions
- compute the array dimensions from the set of terms
- compute the delinearized access functions for each dimension
The first step is executed on all the memory access functions such that we
gather all the patterns in which an array is accessed. The second step reduces
all this information in a unique description of the sizes of the array. The
third step is delinearizing each memory access function following the common
description of the shape of the array computed in step 2.
This rewrite of the delinearization pass also solves a problem we had with the
previous implementation: because the previous algorithm was by induction on the
structure of the SCEV, it would not correctly recognize the shape of the array
when the memory access was not following the nesting of the loops: for example,
see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll
; void foo(long n, long m, long o, double A[n][m][o]) {
;
; for (long i = 0; i < n; i++)
; for (long j = 0; j < m; j++)
; for (long k = 0; k < o; k++)
; A[i][k][j] = 1.0;
Starting with this patch we no longer delinearize access functions that do not
contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll
;; for (long int i = 0; i < 100; i++)
;; for (long int j = 0; j < 100; j++) {
;; A[2*i - 4*j] = i;
;; *B++ = A[6*i + 8*j];
these accesses will not be delinearized as the upper bound of the loops are
constants, and their access functions do not contain SCEVUnknown parameters.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8