- Rename mmx-builtins to mmx-intrinsics to match other intrinsic test naming.
- Remove tests that duplicate functionality from mmx-intrinsics.ll.
- Move arith related tests to mmx-arith.ll.
- MMX related shuffle goes to vector-shuffle-mmx.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227130 91177308-0d34-0410-b5e6-96231b3b80d8
An unreachable default destination can be exploited by other optimizations and
allows for more efficient lowering. Both the SDag switch lowering and
LowerSwitch can exploit unreachable defaults.
Also make TurnSwitchRangeICmp handle switches with unreachable default.
This is kind of separate change, but it cannot be tested without the change
above, and I don't want to land the change above without this since that would
regress other tests.
Differential Revision: http://reviews.llvm.org/D6471
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227125 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of creating a pattern like "(p && a) || ((!p) && b)",
just expand the i8 operands to i32 and perform the selp on them.
Fixes PR22246
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227123 91177308-0d34-0410-b5e6-96231b3b80d8
According to my reading of the LangRef, volatiles are only ordered with respect to other volatiles. It is entirely legal and profitable to forward unrelated loads over the volatile load. This patch implements this for GVN by refining the transition rules MemoryDependenceAnalysis uses when encountering a volatile.
The added test cases show where the extra flexibility is profitable for local dependence optimizations. I have a related change (227110) which will extend this to non-local dependence (i.e. PRE), but that's essentially orthogonal to the semantic change in this patch. I have tested the two together and can confirm that PRE works over a volatile load with both changes. I will be submitting a PRE w/volatiles test case seperately in the near future.
Differential Revision: http://reviews.llvm.org/D6901
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227112 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes the following miscompile:
define void @sqrtsd(<2 x double> %a) nounwind uwtable ssp {
%0 = tail call <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double> %a) nounwind
%a0 = extractelement <2 x double> %0, i32 0
%conv = fptrunc double %a0 to float
%a1 = extractelement <2 x double> %0, i32 1
%conv3 = fptrunc double %a1 to float
tail call void @callee2(float %conv, float %conv3) nounwind
ret void
}
Current codegen:
sqrtsd %xmm0, %xmm1 ## high element of %xmm1 is undef here
xorps %xmm0, %xmm0
cvtsd2ss %xmm1, %xmm0
shufpd $1, %xmm1, %xmm1
cvtsd2ss %xmm1, %xmm1 ## operating on undef value
jmp _callee
This is a continuation of http://llvm.org/viewvc/llvm-project?view=revision&revision=224624 ( http://reviews.llvm.org/D6330 )
which was itself a continuation of r167064 ( http://llvm.org/viewvc/llvm-project?view=revision&revision=167064 ).
All of these patches are partial fixes for PR14221 ( http://llvm.org/bugs/show_bug.cgi?id=14221 );
this should be the final patch needed to resolve that bug.
Differential Revision: http://reviews.llvm.org/D6885
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227111 91177308-0d34-0410-b5e6-96231b3b80d8
This change is mostly motivated by exposing information about the original query instruction to the actual scanning work in getPointerDependencyFrom when used by GVN PRE. In a follow up change, I will use this to be more precise with regards to the semantics of volatile instructions encountered in the scan of a basic block.
Worth noting, is that this change (despite appearing quite simple) is not semantically preserving. By providing more information to the helper routine, we allow some optimizations to kick in that weren't previously able to (when called from this code path.) In particular, we see that treatment of !invariant.load becomes more precise. In theory, we might see a difference with an ordered/atomic instruction as well, but I'm having a hard time actually finding a test case which shows that.
Test wise, I've included new tests for !invariant.load which illustrate this difference. I've also included some updated TBAA tests which highlight that this change isn't needed for that optimization to kick in - it's handled inside alias analysis itself.
Eventually, it would be nice to factor the !invariant.load handling inside alias analysis as well.
Differential Revision: http://reviews.llvm.org/D6895
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227110 91177308-0d34-0410-b5e6-96231b3b80d8
than on MipsSubtargetInfo.
This required a bit of massaging in the MC level to handle this since
MC is a) largely a collection of disparate classes with no hierarchy,
and b) there's no overarching equivalent to the TargetMachine, instead
only the subtarget via MCSubtargetInfo (which is the base class of
TargetSubtargetInfo).
We're now storing the ABI in both the TargetMachine level and in the
MC level because the AsmParser and the TargetStreamer both need to
know what ABI we have to parse assembly and emit objects. The target
streamer has a pointer to the one in the asm parser and is updated
when the asm parser is created. This is fragile as the FIXME comment
notes, but shouldn't be a problem in practice since we always
create an asm parser before attempting to emit object code via the
assembler. The TargetMachine now contains the ABI so that the DataLayout
can be constructed dependent upon ABI.
All testcases have been updated to use the -target-abi command line
flag so that we can set the ABI without using a subtarget feature.
Should be no change visible externally here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227102 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds support for some operations that were missing from
128-bit integer types (add/sub/mul/sdiv/udiv... etc.). With these
changes we can support the __int128_t and __uint128_t data types
from C/C++.
Depends on D7125
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7143
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227089 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r227003. Support for addition/subtraction and
various other operations for the i128 data type will be added in a
future commit based on the review D7143.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227082 91177308-0d34-0410-b5e6-96231b3b80d8
-no-exec-stack. This was due to it not deriving from the correct
asm info base class and missing the override for the exec
stack section query. Added another line to the noexec test
line to make sure this doesn't regress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227074 91177308-0d34-0410-b5e6-96231b3b80d8
physical register that is described in a DBG_VALUE.
In the testcase the DBG_VALUE describing "p5" becomes unavailable
because the register its address is in is clobbered and we (currently)
aren't smart enough to realize that the value is rematerialized immediately
after the DBG_VALUE and/or is actually a stack slot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227056 91177308-0d34-0410-b5e6-96231b3b80d8
It appears we have different behavior with and without -mcpu=pwr8 even
with ppc64le defaulting to POWER8. The failure appears as follows:
/home/bb/cmake-llvm-x86_64-linux/llvm-project/llvm/test/CodeGen/PowerPC/ppc64le-aggregates.ll:268:14: error: expected string not found in input
; CHECK-DAG: lfs 1, 0([[REG]])
^
<stdin>:497:11: note: scanning from here
ld 3, .LC1@toc@l(3)
^
<stdin>:497:11: note: with variable "REG" equal to "3"
ld 3, .LC1@toc@l(3)
^
<stdin>:514:2: note: possible intended match here
lfs 1, 0(4)
^
Reverting this particular test case change. Nemanja, please have a look
at the reason for the failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227055 91177308-0d34-0410-b5e6-96231b3b80d8
Test by Nemanja Ivanovic.
Since ppc64le implies POWER8 as a minimum, it makes sense that the
same features are included. Since the pwr8 processor model will likely
be getting new features until the implementation is complete, I
created a new list to add these updates to. This will include them in
both pwr8 and ppc64le.
Furthermore, it seems that it would make sense to compose the feature
lists for other processor models (pwr3 and up). Per discussion in the
review, I will make this change in a subsequent patch.
In order to test the changes, I've added an additional run step to
test cases that specify -march=ppc64le -mcpu=pwr8 to omit the -mcpu
option. Since the feature lists are the same, the behaviour should be
unchanged.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227053 91177308-0d34-0410-b5e6-96231b3b80d8
MIPS64 ELF file has a very specific relocation record format. Each
record might specify up to three relocation operations. So the `r_info`
field in fact consists of three relocation type sub-fields and optional
code of "special" symbols.
http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf
page 40
The patch implements support of the MIPS64 relocation record format in
yaml2obj/obj2yaml tools by introducing new optional Relocation fields:
Type2, Type3, and SpecSym. These fields are recognized only if the
object/YAML file relates to the MIPS64 target.
Differential Revision: http://reviews.llvm.org/D7136
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227044 91177308-0d34-0410-b5e6-96231b3b80d8
- Added KSHIFTB/D/Q for skx
- Added KORTESTB/D/Q for skx
- Fixed store operation for v8i1 type for KNL
- Store size of v8i1, v4i1 and v2i1 are changed to 8 bits
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227043 91177308-0d34-0410-b5e6-96231b3b80d8
These tests used to test the legacy JIT but since that has been removed they're
just redundantly testing MCJIT. Remove them and just leave their counterparts in
test/ExecutionEngine/MCJIT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227010 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
V8->V9:
- cleanup tests
V7->V8:
- addressed feedback from David:
- switched to range-based 'for' loops
- fixed formatting of tests
V6->V7:
- rebased and adjusted AsmPrinter args
- CamelCased .td, fixed formatting, cleaned up names, removed unused patterns
- diffstat: 3 files changed, 203 insertions(+), 227 deletions(-)
V5->V6:
- addressed feedback from Chandler:
- reinstated full verbose standard banner in all files
- fixed variables that were not in CamelCase
- fixed names of #ifdef in header files
- removed redundant braces in if/else chains with single statements
- fixed comments
- removed trailing empty line
- dropped debug annotations from tests
- diffstat of these changes:
46 files changed, 456 insertions(+), 469 deletions(-)
V4->V5:
- fix setLoadExtAction() interface
- clang-formated all where it made sense
V3->V4:
- added CODE_OWNERS entry for BPF backend
V2->V3:
- fix metadata in tests
V1->V2:
- addressed feedback from Tom and Matt
- removed top level change to configure (now everything via 'experimental-backend')
- reworked error reporting via DiagnosticInfo (similar to R600)
- added few more tests
- added cmake build
- added Triple::bpf
- tested on linux and darwin
V1 cover letter:
---------------------
recently linux gained "universal in-kernel virtual machine" which is called
eBPF or extended BPF. The name comes from "Berkeley Packet Filter", since
new instruction set is based on it.
This patch adds a new backend that emits extended BPF instruction set.
The concept and development are covered by the following articles:
http://lwn.net/Articles/599755/http://lwn.net/Articles/575531/http://lwn.net/Articles/603983/http://lwn.net/Articles/606089/http://lwn.net/Articles/612878/
One of use cases: dtrace/systemtap alternative.
bpf syscall manpage:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe
instruction set description and differences vs classic BPF:
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt
Short summary of instruction set:
- 64-bit registers
R0 - return value from in-kernel function, and exit value for BPF program
R1 - R5 - arguments from BPF program to in-kernel function
R6 - R9 - callee saved registers that in-kernel function will preserve
R10 - read-only frame pointer to access stack
- two-operand instructions like +, -, *, mov, load/store
- implicit prologue/epilogue (invisible stack pointer)
- no floating point, no simd
Short history of extended BPF in kernel:
interpreter in 3.15, x64 JIT in 3.16, arm64 JIT, verifier, bpf syscall in 3.18, more to come in the future.
It's a very small and simple backend.
There is no support for global variables, arbitrary function calls, floating point, varargs,
exceptions, indirect jumps, arbitrary pointer arithmetic, alloca, etc.
From C front-end point of view it's very restricted. It's done on purpose, since kernel
rejects all programs that it cannot prove safe. It rejects programs with loops
and with memory accesses via arbitrary pointers. When kernel accepts the program it is
guaranteed that program will terminate and will not crash the kernel.
This patch implements all 'must have' bits. There are several things on TODO list,
so this is not the end of development.
Most of the code is a boiler plate code, copy-pasted from other backends.
Only odd things are lack or < and <= instructions, specialized load_byte intrinsics
and 'compare and goto' as single instruction.
Current instruction set is fixed, but more instructions can be added in the future.
Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Subscribers: majnemer, chandlerc, echristo, joerg, pete, rengolin, kristof.beyls, arsenm, t.p.northover, tstellarAMD, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D6494
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227008 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
At the moment, address calculation is taking the debug line info from the
address node (e.g. TargetGlobalAddress). When a function is called multiple
times, this results in output of the form:
.loc $first_call_location
.. address calculation ..
.. function call ..
.. address calculation ..
.loc $second_call_location
.. function call ..
.loc $first_call_location
.. address calculation ..
.loc $third_call_location
.. function call ..
This patch makes address calculations for function calls take the debug line
info for the call node and results in output of the form:
.loc $first_call_location
.. address calculation ..
.. function call ..
.loc $second_call_location
.. address calculation ..
.. function call ..
.loc $third_call_location
.. address calculation ..
.. function call ..
All other address calculations continue to use the address node.
Test Plan: Fixes test/DebugInfo/multiline.ll on a mips host.
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D7050
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227005 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In addition to the included tests, this fixes
test/CodeGen/Generic/i128-addsub.ll on a mips64 host.
Reviewers: atanasyan, sagar, vmedic
Reviewed By: vmedic
Subscribers: sdkie, llvm-commits
Differential Revision: http://reviews.llvm.org/D6610
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227003 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a regression introduced by r226816.
When replacing a splat shuffle node with a constant build_vector,
make sure that the new build_vector has a valid number of elements.
Thanks to Patrik Hagglund for reporting this problem and providing a
small reproducible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227002 91177308-0d34-0410-b5e6-96231b3b80d8
This just lifts the logic into a static helper function, sinks the
legacy pass to be a trivial wrapper of that helper fuction, and adds
a trivial wrapper for the new PM as well. Not much to see here.
I switched a test case to run in both modes, but we have to strip the
dead prototypes separately as that pass isn't in the new pass manager
(yet).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226999 91177308-0d34-0410-b5e6-96231b3b80d8
This is exciting as this is a much more involved port. This is
a complex, existing transformation pass. All of the core logic is shared
between both old and new pass managers. Only the access to the analyses
is separate because the actual techniques are separate. This also uses
a bunch of different and interesting analyses and is the first time
where we need to use an analysis across an IR layer.
This also paves the way to expose instcombine utility functions. I've
got a static function that implements the core pass logic over
a function which might be mildly interesting, but more interesting is
likely exposing a routine which just uses instructions *already in* the
worklist and combines until empty.
I've switched one of my favorite instcombine tests to run with both as
well to make sure this keeps working.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226987 91177308-0d34-0410-b5e6-96231b3b80d8
Eventually we can make some of these pass the error along to the caller.
Reports a fatal error if:
We find an invalid abbrev record
We try to get an invalid abbrev number
We can't fill the current word due to an EOF
Fixed an invalid bitcode test to check for output with FileCheck
Bugs found with afl-fuzz
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226986 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds the missing LD[U]RSW variants to the load store optimizer, so
that we generate LDPSW when possible.
<rdar://problem/19583480>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226978 91177308-0d34-0410-b5e6-96231b3b80d8
These tests are asserting and crashing for me, and 'not' sees that as a
non-zero exit code instead of a signal code for obscure Windows reasons.
This causes the test to pass, giving me an unclean 'ninja check'.
The test is already XFAILd, so just run the test without 'not' and let
lit handle the failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226958 91177308-0d34-0410-b5e6-96231b3b80d8
Handle the poor codegen for i64/x86xmm->v2i64 (%mm -> %xmm) moves. Instead of
using stack store/load pair to do the job, use scalar_to_vector directly, which
in the MMX case can use movq2dq. This was the current behavior prior to
improvements for vector legalization of extloads in r213897.
This commit fixes the regression and as a side-effect also remove some
unnecessary shuffles.
In the new attached testcase, we go from:
pshufw $-18, (%rdi), %mm0
movq %mm0, -8(%rsp)
movq -8(%rsp), %xmm0
pshufd $-44, %xmm0, %xmm0
movd %xmm0, %eax
...
To:
pshufw $-18, (%rdi), %mm0
movq2dq %mm0, %xmm0
movd %xmm0, %eax
...
Differential Revision: http://reviews.llvm.org/D7126
rdar://problem/19413324
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226953 91177308-0d34-0410-b5e6-96231b3b80d8
We used to do this promotion during DAG legalization, but this
caused an infinite loop in ExpandUnalignedLoad() because it assumed
that i64 loads were legal if i64 was a legal type.
It also seems better to report i64 loads as legal, since they actually
are and we were just promoting them to simplify our tablegen files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226945 91177308-0d34-0410-b5e6-96231b3b80d8
Should make the tests run when using CMake on systems where 'uname -p'
reports "amd64", such as FreeBSD.
Should fix PR21559.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226937 91177308-0d34-0410-b5e6-96231b3b80d8