type for the shift amount type. Add a check
that shifts and rotates use the type returned
by getShiftAmountTy for the amount. This
exposed some problems in CellSPU and PPC,
which have already been fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58455 91177308-0d34-0410-b5e6-96231b3b80d8
other day that PPC custom lowering could create
a BUILD_PAIR of two f64 with a result type of...
f64! - already fixed). Fix a place that triggers
the sanity check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58378 91177308-0d34-0410-b5e6-96231b3b80d8
is morphed by AnalyzeNewNode into a previously
processed node, and different result values of
that node are remapped to values with different
nodes, then we could end up using wrong values
here [we were assuming that all results remap
to values with the same underlying node]. This
seems theoretically possible, but I don't have
a testcase. The meat of the patch is in the
changes to AnalyzeNewNode/AnalyzeNewValue and
ReplaceNodeWith. While there, I changed names
like RemapNode to RemapValue, since it really
remaps values. To tell the truth, I would be
much happier if we were only remapping nodes
(it would simplify a bunch of logic, and allow
for some cute speedups) but I haven't yet worked
out how to do that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58372 91177308-0d34-0410-b5e6-96231b3b80d8
ppcf128 to i32 conversion and expand it into a code
sequence like in LegalizeDAG. This needs custom
ppc lowering of FP_ROUND_INREG, so turn that on and
make it work with LegalizeTypes. Probably PPC should
simply custom lower the original conversion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58329 91177308-0d34-0410-b5e6-96231b3b80d8
id could end up being wrong mostly because of
forgetting to remap new nodes that morphed into
processed nodes through CSE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58323 91177308-0d34-0410-b5e6-96231b3b80d8
(and a bunch of other node types). While there, I
added a doNotCSE predicate and used it to reduce code
duplication (some of the duplicated code was wrong...).
This fixes ARM/cse-libcalls.ll when using LegalizeTypes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58249 91177308-0d34-0410-b5e6-96231b3b80d8
worklist twice: UpdateNodeOperands could morph
a new node into a node already on the worklist.
We would then recalculate the NodeId for this
existing node and add it to the worklist. The
testcase is ARM/cse-libcalls.ll, the problem
showing up once UpdateNodeOperands is taught to
do CSE for calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58246 91177308-0d34-0410-b5e6-96231b3b80d8
may return i8, which can result in SELECT nodes for
which the type of the condition is i8, but there are
no patterns for select with i8 condition. Tweak the
LegalizeTypes logic to avoid this as much as possible.
This isn't a real fix because it is still perfectly
possible to end up with such select nodes - CellSPU
needs to be fixed IMHO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57968 91177308-0d34-0410-b5e6-96231b3b80d8
that is not of type MVT::i1 in SELECT and SETCC nodes.
Relax the LegalizeTypes SELECT condition promotion
sanity checks to allow other condition types than i1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57966 91177308-0d34-0410-b5e6-96231b3b80d8
to have a different type to the vector element
type. This should be fairly harmless because in
the past guys like this were being built all over
the place (and were cleaned up when I added this
check). The reason for relaxing this check is
that it helps LegalizeTypes legalize vector
shuffles: the mask is a BUILD_VECTOR that it is
*not always possible* to legalize while keeping it
a BUILD_VECTOR (vector_shuffle requires the mask
to be a BUILD_VECTOR, as opposed to a vector with
the right vector type). With this check it is even
harder to legalize the mask - turning the check off
means that LegalizeTypes manages to legalize almost
all vector shuffles encountered in practice. The
correct solution is to change vector_shuffle to be a
variadic node with the mask built into it as operands.
While waiting for that change, this hack stops the
problem with vector_shuffle from blocking the turning
on of LegalizeTypes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57965 91177308-0d34-0410-b5e6-96231b3b80d8
The same one Apple gcc uses, faster. Also gets the
extreme case in gcc.c-torture/execute/ieee/rbug.c
correct which we weren't before; this is not
sufficient to get the test to pass though, there
is another bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57926 91177308-0d34-0410-b5e6-96231b3b80d8
in the 32-bit signed offset field of addresses. Even though this
may be intended, some linkers refuse to relocate code where the
relocated address computation overflows.
Also, fix the sign-extension of constant offsets to use the
actual pointer size, rather than the size of the GlobalAddress
node, which may be different, for example on x86-64 where MVT::i32
is used when the address is being fit into the 32-bit displacement
field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57885 91177308-0d34-0410-b5e6-96231b3b80d8
for strange asm conditions earlier. In this case, we have a
double being passed in an integer reg class. Convert to like
sized integer register so that we allocate the right number
for the class (two i32's for the f64 in this case).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57862 91177308-0d34-0410-b5e6-96231b3b80d8
result type when the result type is legal but
not the operand type. Add additional support
for EXTRACT_SUBVECTOR and CONCAT_VECTORS,
needed to handle such cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57840 91177308-0d34-0410-b5e6-96231b3b80d8
the condition of a SELECT node. Make sure that the
correct extension type (any-, sign- or zero-extend)
is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57836 91177308-0d34-0410-b5e6-96231b3b80d8
elements. Otherwise LegalizeTypes will, reasonably
enough, legalize the mask, which may result in it
no longer being a BUILD_VECTOR node (LegalizeDAG
simply ignores the legality or not of vector masks).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57782 91177308-0d34-0410-b5e6-96231b3b80d8
the previous patch this one actually passes make check.
"Fix PR2356 on PowerPC: if we have an input and output that are tied together
that have different sizes (e.g. i32 and i64) make sure to reserve registers for
the bigger operand."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57771 91177308-0d34-0410-b5e6-96231b3b80d8
and add a TargetLowering hook for it to use to determine when this
is legal (i.e. not in PIC mode, etc.)
This allows instruction selection to emit folded constant offsets
in more cases, such as the included testcase, eliminating the need
for explicit arithmetic instructions.
This eliminates the need for the C++ code in X86ISelDAGToDAG.cpp
that attempted to achieve the same effect, but wasn't as effective.
Also, fix handling of offsets in GlobalAddressSDNodes in several
places, including changing GlobalAddressSDNode's offset from
int to int64_t.
The Mips, Alpha, Sparc, and CellSPU targets appear to be
unaware of GlobalAddress offsets currently, so set the hook to
false on those targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57748 91177308-0d34-0410-b5e6-96231b3b80d8