Like V_SET0, these instructions are expanded by ExpandPostRA to xorps /
vxorps so they can participate in execution domain swizzling.
This also makes the AVX variants redundant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145440 91177308-0d34-0410-b5e6-96231b3b80d8
Conservatively returns zero when the GV does not specify an alignment nor is it
initialized. Previously it returns ABI alignment for type of the GV. However, if
the type is a "packed" type, then the under-specified alignments is attached to
the load / store instructions. In that case, the alignment of the type cannot be
trusted.
rdar://10464621
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145300 91177308-0d34-0410-b5e6-96231b3b80d8
than ABI alignment. These are loads / stores from / to "packed" data structures.
Their alignments are intentionally under-specified.
rdar://10301431
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145273 91177308-0d34-0410-b5e6-96231b3b80d8
was centered around the premise of laying out a loop in a chain, and
then rotating that chain. This is good for preserving contiguous layout,
but bad for actually making sane rotations. In order to keep it safe,
I had to essentially make it impossible to rotate deeply nested loops.
The information needed to correctly reason about a deeply nested loop is
actually available -- *before* we layout the loop. We know the inner
loops are already fused into chains, etc. We lose information the moment
we actually lay out the loop.
The solution was the other alternative for this algorithm I discussed
with Benjamin and some others: rather than rotating the loop
after-the-fact, try to pick a profitable starting block for the loop's
layout, and then use our existing layout logic. I was worried about the
complexity of this "pick" step, but it turns out such complexity is
needed to handle all the important cases I keep teasing out of benchmarks.
This is, I'm afraid, a bit of a work-in-progress. It is still
misbehaving on some likely important cases I'm investigating in Olden.
It also isn't really tested. I'm going to try to craft some interesting
nested-loop test cases, but it's likely to be extremely time consuming
and I don't want to go there until I'm sure I'm testing the correct
behavior. Sadly I can't come up with a way of getting simple, fine
grained test cases for this logic. We need complex loop structures to
even trigger much of it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145183 91177308-0d34-0410-b5e6-96231b3b80d8
heavily on AnalyzeBranch. That routine doesn't behave as we want given
that rotation occurs mid-way through re-ordering the function. Instead
merely check that there are not unanalyzable branching constructs
present, and then reason about the CFG via successor lists. This
actually simplifies my mental model for all of this as well.
The concrete result is that we now will rotate more loop chains. I've
added a test case from Olden highlighting the effect. There is still
a bit more to do here though in order to regain all of the performance
in Olden.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145179 91177308-0d34-0410-b5e6-96231b3b80d8
trampoline forms. Both of these were correct in LLVM 3.0, and we don't
need to support LLVM 2.9 and earlier in mainline.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145174 91177308-0d34-0410-b5e6-96231b3b80d8
pass. This is designed to achieve one of the important optimizations
that the old code placement pass did, but more simply.
This is a somewhat rough and *very* conservative version of the
transform. We could get a lot fancier here if there are profitable cases
to do so. In particular, this only looks for a single pattern, it
insists that the loop backedge being rotated away is the last backedge
in the chain, and it doesn't provide any means of doing better in-loop
placement due to the rotation. However, it appears that it will handle
the important loops I am finding in the LLVM test suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145158 91177308-0d34-0410-b5e6-96231b3b80d8
was returning incorrect values in rare cases, and incorrectly marking
exact conversions as inexact in some more common cases. Fixes PR11406, and a
missed optimization in test/CodeGen/X86/fp-stack-O0.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145141 91177308-0d34-0410-b5e6-96231b3b80d8
tablegen patterns for scalar FMA4 operations and intrinsic. Also
add tests for vfmaddsd.
Patch by Jan Sjodin
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145133 91177308-0d34-0410-b5e6-96231b3b80d8
need lots of fanciness around retaining a reference to a Chain's slot in
the BlockToChain map, but that's all gone now. We can just go directly
to allocating the new chain (which will update the mapping for us) and
using it.
Somewhat gross mechanically generated test case replicates the issue
Duncan spotted when actually testing this out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145120 91177308-0d34-0410-b5e6-96231b3b80d8
conflicts, we should only be adding the first block of the chain to the
list, lest we try to merge into the middle of that chain. Most of the
places we were doing this we already happened to be looking at the first
block, but there is no reason to assume that, and in some cases it was
clearly wrong.
I've added a couple of tests here. One already worked, but I like having
an explicit test for it. The other is reduced from a test case Duncan
reduced for me and used to crash. Now it is handled correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145119 91177308-0d34-0410-b5e6-96231b3b80d8
Before:
movabsq $4294967296, %rax ## encoding: [0x48,0xb8,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00]
testq %rax, %rdi ## encoding: [0x48,0x85,0xf8]
jne LBB0_2 ## encoding: [0x75,A]
After:
btq $32, %rdi ## encoding: [0x48,0x0f,0xba,0xe7,0x20]
jb LBB0_2 ## encoding: [0x72,A]
btq is usually slower than testq because it doesn't fuse with the jump, but here we're better off
saving one register and a giant movabsq.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145103 91177308-0d34-0410-b5e6-96231b3b80d8
further. This invariant just wasn't going to work in the face of
unanalyzable branches; we need to be resillient to the phenomenon of
chains poking into a loop and poking out of a loop. In fact, we already
were, we just needed to not assert on it.
This was found during a bootstrap with block placement turned on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145100 91177308-0d34-0410-b5e6-96231b3b80d8
VSHUFPS/VSHUFPD instructions while lowering VECTOR_SHUFFLE node. I check a commuted VSHUFP mask.
The patch was reviewed by Bruno.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145099 91177308-0d34-0410-b5e6-96231b3b80d8
successors, they just are all landing pad successors. We handle this the
same way as no successors. Comments attached for the next person to wade
through here and another lovely test case courtesy of Benjamin Kramer's
bugpoint reduction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145098 91177308-0d34-0410-b5e6-96231b3b80d8
This was a bug in keeping track of the available domains when merging
domain values.
The wrong domain mask caused ExecutionDepsFix to try to move VANDPSYrr
to the integer domain which is only available in AVX2.
Also add an assertion to catch future attempts at emitting AVX2
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145096 91177308-0d34-0410-b5e6-96231b3b80d8
reversed in the function's original ordering, and we happened to
encounter it while handling an outer unnatural CFG structure.
Thanks to the test case reduced from GCC's source by Benjamin Kramer.
This may also fix a crasher in gzip that Duncan reduced for me, but
I haven't yet gotten to testing that one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145094 91177308-0d34-0410-b5e6-96231b3b80d8
updateTerminator code didn't correctly handle EH terminators in one very
specific case. AnalyzeBranch would find no terminator instruction, and
so the fallback in updateTerminator is to assume fallthrough. This is
correct, but the destination of the fallthrough was assumed to be the
first successor.
This is *almost always* true, but in certain cases the loop
transformations will cause the landing pad to be the first successor!
Instead of this brittle logic, actually look through the successors for
a non-landing-pad accessor, and to assert if more than one is found.
This will hopefully fix some (if not all) of the self host miscompiles
with block placement. Thanks to Benjamin Kramer for reporting, Nick
Lewycky for an initial stab at a reduction, and Duncan for endless
advice on EH (which I know nothing about) as well as reviewing the
actual fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145062 91177308-0d34-0410-b5e6-96231b3b80d8