"Instruction 'foo' has no tokens" errors during llvm-tblgen
-gen-asm-matcher attempts. At this time, the added
tokens are "#comment" style rather than the actual mnemonic. This will
be revisited once the rest of the base asmparser bits get straightened
out for ppc64-elf-linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165237 91177308-0d34-0410-b5e6-96231b3b80d8
Since TOC is just defined for PPC64, move its definition to PPC64 td file.
Patch by Adhemerval Zanella.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163234 91177308-0d34-0410-b5e6-96231b3b80d8
Slight reorganisation of PPC instruction classes for scheduling. No
functionality change for existing subtargets.
- Clearly separate load/store-with-update instructions from regular loads and stores.
- Split IntRotateD -> IntRotateD and IntRotateDI
- Split out fsub and fadd from FPGeneral -> FPAddSub
- Update existing itineraries
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162729 91177308-0d34-0410-b5e6-96231b3b80d8
Allow load-immediates to be rematerialised in the register coalescer for
PPC. This makes test/CodeGen/PowerPC/big-endian-formal-args.ll fail,
because it relies on a register move getting emitted. The immediate load is
equivalent, so change this test case.
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162727 91177308-0d34-0410-b5e6-96231b3b80d8
The 32-bit ABI requires CR bit 6 to be set if the call has fp arguments and
unset if it doesn't. The solution up to now was to insert a MachineNode to
set/unset the CR bit, which produces a CR vreg. This vreg was then copied
into CR bit 6. When the register allocator saw a bunch of these in the same
function, it allocated the set/unset CR bit in some random CR register (1
extra instruction) and then emitted CR moves before every vararg function
call, rather than just setting and unsetting CR bit 6 directly before every
vararg function call. This patch instead inserts a PPCcrset/PPCcrunset
instruction which are then matched by a dedicated instruction pattern.
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162725 91177308-0d34-0410-b5e6-96231b3b80d8
Call instructions are no longer required to be variadic, and
variable_ops should only be used for instructions that encode a variable
number of arguments, like the ARM stm/ldm instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160189 91177308-0d34-0410-b5e6-96231b3b80d8
The existing contraction patterns are replaced with fma/fneg.
Overall functionality should be the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158955 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds DAG combines to form FMAs from pairs of FADD + FMUL or
FSUB + FMUL. The combines are performed when:
(a) Either
AllowExcessFPPrecision option (-enable-excess-fp-precision for llc)
OR
UnsafeFPMath option (-enable-unsafe-fp-math)
are set, and
(b) TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) is true for the type of
the FADD/FSUB, and
(c) The FMUL only has one user (the FADD/FSUB).
If your target has fast FMA instructions you can make use of these combines by
overriding TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) to return true for
types supported by your FMA instruction, and adding patterns to match ISD::FMA
to your FMA instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158757 91177308-0d34-0410-b5e6-96231b3b80d8
On the POWER7, adds and logical operations can also be handled
in the load/store pipelines. We'll call these IntSimple.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158366 91177308-0d34-0410-b5e6-96231b3b80d8
This pass is derived from the Hexagon HardwareLoops pass. The only significant enhancement over the Hexagon
pass is that PPCCTRLoops will also attempt to delete the replaced add and compare operations if they are
no longer otherwise used. Also, invalid preheader DebugLoc is not used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158204 91177308-0d34-0410-b5e6-96231b3b80d8
Loads and stores can have different pipeline behavior, especially on
embedded chips. This change allows those differences to be expressed.
Except for the 440 scheduler, there are no functionality changes.
On the 440, the latency adjustment is only by one cycle, and so this
probably does not affect much. Nevertheless, it will make a larger
difference in the future and this removes a FIXME from the 440 itin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153821 91177308-0d34-0410-b5e6-96231b3b80d8
Dynamic linking on PPC64 has had problems since we had to move the top-down
hazard-detection logic post-ra. For dynamic linking to work there needs to be
a nop placed after every call. It turns out that it is really hard to guarantee
that nothing will be placed in between the call (bl) and the nop during post-ra
scheduling. Previous attempts at fixing this by placing logic inside the
hazard detector only partially worked.
This is now fixed in a different way: call+nop codegen-only instructions. As far
as CodeGen is concerned the pair is now a single instruction and cannot be split.
This solution works much better than previous attempts.
The scoreboard hazard detector is also renamed to be more generic, there is currently
no cpu-specific logic in it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153816 91177308-0d34-0410-b5e6-96231b3b80d8
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145714 91177308-0d34-0410-b5e6-96231b3b80d8
piclabel operand. The operand in the tablegen definition doesn't actually turn
into an MI operand, so it just confuses anything checking the TargetInstrDesc
for the number of operands. It suffices to just have an implicit def of LR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131626 91177308-0d34-0410-b5e6-96231b3b80d8
into the immediate field. This allows us to encode stuff like this:
lbz r3, lo16(__ZL4init)(r4) ; globalopt.cpp:5
; encoding: [0x88,0x64,A,A]
; fixup A - offset: 0, value: lo16(__ZL4init), kind: fixup_ppc_lo16
stw r3, lo16(__ZL1s)(r5) ; globalopt.cpp:6
; encoding: [0x90,0x65,A,A]
; fixup A - offset: 0, value: lo16(__ZL1s), kind: fixup_ppc_lo16
With this, we should have a completely function MCCodeEmitter for PPC, wewt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119134 91177308-0d34-0410-b5e6-96231b3b80d8
modes. For example, we now get:
ld r3, lo16(_G)(r3) ; encoding: [0xe8,0x63,A,0bAAAAAA00]
; fixup A - offset: 0, value: lo16(_G), kind: fixup_ppc_lo14
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119133 91177308-0d34-0410-b5e6-96231b3b80d8
as direct calls. Change conditional branches to encode with
their own method, simplifying the JIT encoder and making room
for adding an mc fixup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119125 91177308-0d34-0410-b5e6-96231b3b80d8
code in the JIT. Use this to form the first fixup for the PPC backend,
giving us stuff like this:
bl L_foo$stub ; encoding: [0b010010AA,A,A,0bAAAAAA01]
; fixup A - offset: 0, value: L_foo$stub, kind: fixup_ppc_br24
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119123 91177308-0d34-0410-b5e6-96231b3b80d8
registers. Currently it is not so marked, which leads to
VCMPEQ instructions that feed into it getting deleted.
If it is so marked, local RA complains about this sequence:
vreg = MCRF CR0
MFCR <kill of whatever preg got assigned to vreg>
All current uses of this instruction are only interested in
one of the 8 CR registers, so redefine MFCR to be a normal
unary instruction with a CR input (which is emitted only as
a comment). That avoids all problems. 7739628.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104238 91177308-0d34-0410-b5e6-96231b3b80d8
This is possible because F8RC is a subclass of F4RC. We keep FMRSD around so
fextend has a pattern.
Also allow folding of memory operands on FMRSD.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97275 91177308-0d34-0410-b5e6-96231b3b80d8
It is enough to give the super registers CR0, CR1, ..., and specifying the
sub-registers as well causes confusion in the liveness computations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92778 91177308-0d34-0410-b5e6-96231b3b80d8
Note that "hasDotLocAndDotFile"-style debug info was already broken;
people wanting this functionality should implement it in the
AsmPrinter/DwarfWriter code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89711 91177308-0d34-0410-b5e6-96231b3b80d8
bunch of associated comments, because it doesn't have anything to do
with DAGs or scheduling. This is another step in decoupling MachineInstr
emitting from scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85517 91177308-0d34-0410-b5e6-96231b3b80d8
- Allocate MachineMemOperands and MachineMemOperand lists in MachineFunctions.
This eliminates MachineInstr's std::list member and allows the data to be
created by isel and live for the remainder of codegen, avoiding a lot of
copying and unnecessary translation. This also shrinks MemSDNode.
- Delete MemOperandSDNode. Introduce MachineSDNode which has dedicated
fields for MachineMemOperands.
- Change MemSDNode to have a MachineMemOperand member instead of its own
fields with the same information. This introduces some redundancy, but
it's more consistent with what MachineInstr will eventually want.
- Ignore alignment when searching for redundant loads for CSE, but remember
the greatest alignment.
Target-specific code which previously used MemOperandSDNodes with generic
SDNodes now use MemIntrinsicSDNodes, with opcodes in a designated range
so that the SelectionDAG framework knows that MachineMemOperand information
is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82794 91177308-0d34-0410-b5e6-96231b3b80d8
move a SUBFC (etc.) below the SUBFE (etc.) that consumed
the carry bit. Add missing ADDIC8, noticed along the way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82266 91177308-0d34-0410-b5e6-96231b3b80d8
The Link Register is volatile when using the 32-bit SVR4 ABI.
Make it possible to use the 64-bit SVR4 ABI.
Add non-volatile registers for the 64-bit SVR4 ABI.
Make sure r2 is a reserved register when using the 64-bit SVR4 ABI.
Update PPCFrameInfo for the 64-bit SVR4 ABI.
Add FIXME for 64-bit Darwin PPC.
Insert NOP instruction after direct function calls.
Emit official procedure descriptors.
Create TOC entries for GlobalAddress references.
Spill 64-bit non-volatile registers to the correct slots.
Only custom lower VAARG when using the 32-bit SVR4 ABI.
Use simple VASTART lowering for the 64-bit SVR4 ABI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79091 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of awkwardly encoding calling-convention information with ISD::CALL,
ISD::FORMAL_ARGUMENTS, ISD::RET, and ISD::ARG_FLAGS nodes, TargetLowering
provides three virtual functions for targets to override:
LowerFormalArguments, LowerCall, and LowerRet, which replace the custom
lowering done on the special nodes. They provide the same information, but
in a more immediately usable format.
This also reworks much of the target-independent tail call logic. The
decision of whether or not to perform a tail call is now cleanly split
between target-independent portions, and the target dependent portion
in IsEligibleForTailCallOptimization.
This also synchronizes all in-tree targets, to help enable future
refactoring and feature work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78142 91177308-0d34-0410-b5e6-96231b3b80d8
Make CalculateParameterAndLinkageAreaSize() Darwin-specific.
Remove SVR4 specific code from LowerCALL_Darwin() and LowerFORMAL_ARGUMENTS_Darwin().
Rename MachoABI to DarwinABI for consistency.
Rename ELF ABI to SVR4 ABI for consistency.
Factor out common call return lowering between the Darwin and SVR4 ABI.
Factor out common call lowering between the Darwin and SVR4 ABI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74766 91177308-0d34-0410-b5e6-96231b3b80d8
Implement LowerFORMAL_ARGUMENTS_SVR4().
Implement LowerCALL_SVR4().
Add support for split arguments.
Implement by value parameter passing for aggregates.
Add support for variable argument lists.
Create the spill area for argument registers of variable argument functions no longer at a fixed offset.
Make sure callee saved registers are spilled to the correct stack offsets.
Change allocation order of non-volatile floating-point registers.
Add VRSAVE to the list of callee-saved registers, add CallConvLowering for vararg calls.
Add support for variable argument calls with Vector arguments.
Add support for VR and VRSAVE save area, improve allocation order for non-volatile vector registers.
Stop creating illegal i8 values in LowerVASTART().
Add memory access width hints.
Make sure to reserve space on the stack for the frame pointer.
When using the SVR4 ABI, reserve r13 for the Small Data Area pointer.
Assure that the frame pointer is spilled to the correct location on the stack.
Some FP registers were not marked as volatile.
Make sure the i64 words from a long double are passed either both in registers or both on the stack.
Only put integer arguments in registers which are not marked with the inreg flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74765 91177308-0d34-0410-b5e6-96231b3b80d8
is set but mayLoad is not set. Fix all the problems this turned up.
Change code to not use isSimpleLoad instead of mayLoad unless it
really wants isSimpleLoad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60459 91177308-0d34-0410-b5e6-96231b3b80d8
allows ppcf128->int conversion to work with
DeadInstructionElimination. This is now turned
off but RM is harmless. It does not do a complete
job of modeling the rounding mode.
Revert marking MFCR as using all 7 CR subregisters;
while correct, this caused the problem in PR 2964,
plus the local RA crash noted in the comments.
This was needed to make DeadInstructionElimination,
but as we are not running that, it is backed out
for now. Eventually it should go back in and the
other problems fixed where they're broken.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58391 91177308-0d34-0410-b5e6-96231b3b80d8
Prevents DeadMachineInstructionElim from thinking
things like MTCTR are dead (fixes massive
testsuite breakage at -O0).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58043 91177308-0d34-0410-b5e6-96231b3b80d8
parameters instead of raw Constants. This prevents the constants from
being selected by the isel pass, fixing PR2735.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57385 91177308-0d34-0410-b5e6-96231b3b80d8
with ConstantInt. This led to fixing a bug in TargetLowering.cpp
using getValue instead of getAPIntValue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56159 91177308-0d34-0410-b5e6-96231b3b80d8
so that lwarx and stwcx are always executed the same number of times.
This is important for performance, I'm told.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55163 91177308-0d34-0410-b5e6-96231b3b80d8
Move platform independent code (lowering of possibly overwritten
arguments, check for tail call optimization eligibility) from
target X86ISelectionLowering.cpp to TargetLowering.h and
SelectionDAGISel.cpp.
Initial PowerPC tail call implementation:
Support ppc32 implemented and tested (passes my tests and
test-suite llvm-test).
Support ppc64 implemented and half tested (passes my tests).
On ppc tail call optimization is performed if
caller and callee are fastcc
call is a tail call (in tail call position, call followed by ret)
no variable argument lists or byval arguments
option -tailcallopt is enabled
Supported:
* non pic tail calls on linux/darwin
* module-local tail calls on linux(PIC/GOT)/darwin(PIC)
* inter-module tail calls on darwin(PIC)
If constraints are not met a normal call will be emitted.
A test checking the argument lowering behaviour on x86-64 was added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50477 91177308-0d34-0410-b5e6-96231b3b80d8
PPC-64 doesn't work.) This also lowers the spilling of the CR registers so that
it uses a register other than the default R0 register (the scavenger scrounges
for one). A significant part of this patch fixes how kill information is
handled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47863 91177308-0d34-0410-b5e6-96231b3b80d8
instead of "ISD::STORE". This allows us to mark target-specific dag
nodes as storing (such as ppc byteswap stores). This allows us to remove
more explicit isStore flags from the .td files.
Finally, add a warning for when a .td file contains an explicit
isStore and tblgen is able to infer it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45654 91177308-0d34-0410-b5e6-96231b3b80d8
adjustment fields, and an optional flag. If there is a "dynamic_stackalloc" in
the code, make sure that it's bracketed by CALLSEQ_START and CALLSEQ_END. If
not, then there is the potential for the stack to be changed while the stack's
being used by another instruction (like a call).
This can only result in tears...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44037 91177308-0d34-0410-b5e6-96231b3b80d8
external symbols and global addresses. Add the missing ones.
one important workaround: PPCISD::CALL is matched by both PPCcall_ELF
and PPCcall_Macho, disable the _ELF patterns for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34601 91177308-0d34-0410-b5e6-96231b3b80d8
The algorithm it used before wasn't 100% correct, we now use an iterative
expansion model. This fixes assembler errors when compiling 403.gcc with
tail merging enabled.
Change the way the branch selector works overall: Now, the isel generates
PPC::BCC instructions (as it used to) directly, and these BCC instructions
are emitted to the output or jitted directly if branches don't need
expansion. Only if branches need expansion are instructions rewritten
and created. This should make branch select faster, and eliminates the
Bxx instructions from the .td file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31837 91177308-0d34-0410-b5e6-96231b3b80d8
value and CR reg #. This requires swapping the order of these everywhere
that touches BCC and requires us to write custom matching logic for
PPCcondbranch :(
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31835 91177308-0d34-0410-b5e6-96231b3b80d8
bugs including making sure that the TOS links back to the previous frame,
that the maximum call frame size is not included twice when using frame
pointers, no longer growing the frame on calls, double storing of SP and
a cleaner/faster dynamic alloca.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31792 91177308-0d34-0410-b5e6-96231b3b80d8
Tell the codegen emitter that specific operands are not to be encoded, fixing
JIT regressions w.r.t. pre-inc loads and stores (e.g. lwzu, which we generate
even when general preinc loads are not enabled).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31770 91177308-0d34-0410-b5e6-96231b3b80d8
pair for cleanliness. Add instructions for PPC32 preinc-stores with commented
out patterns. More improvement is needed to enable the patterns, but we're
getting close.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31749 91177308-0d34-0410-b5e6-96231b3b80d8
clobber. This allows LR8 to be save/restored correctly as a 64-bit quantity,
instead of handling it as a 32-bit quantity. This unbreaks ppc64 codegen when
the code is actually located above the 4G boundary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31734 91177308-0d34-0410-b5e6-96231b3b80d8
(because the 64-bit reg target versions aren't implemented yet), doesn't
support r+r addr modes, and doesn't handle stores, but it works otherwise. :)
This is disabled unless -enable-ppc-preinc is passed to llc for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31621 91177308-0d34-0410-b5e6-96231b3b80d8
that takes a register and condition code. Print these pieces of BLR the
right way, even though it is currently set to 'always'.
Next up: get the JIT encoding right, then enhance branch folding to produce
predicated blr for simple examples.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31449 91177308-0d34-0410-b5e6-96231b3b80d8